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For any real number z, |z| = z if x > 0 and = —z if x < 0. It is clear that |z| > 0 for all
x. Also |z| = 0 if and only if z = 0.

Properties: The absolute val i ving properties:

Now adding

b|.
ality, we have

This two ineq

which yields that
—la—b| < |a] —[b] < |a —b].

Hence aga

[lal = 1b1] < Ja— .

[lal = 1ol| < la = b < Ja] + o]

Problem: Let A and B be two nonempty sets of real numbers and let L be a real number.
Suppose that there exists positive real numbers x,y such that |a — L| < z for all a € A and
that |2b — L| < y for all b € B. Show that |a — 4b] < z + 2y + |L| for all a € A and b € B.

Solution: Let a € A and b € B. Then we have

la—4b|=|a—L+2L—4b—L| <|a—L|+22b— L| + |L| < =+ 2y + |L|.

Problem: Let S be a nonempty set of real numbers and let a be a nonzero real number.
Suppose that |z — a| < % for all x € S. Prove that |z| > % forall z € S.

Problem: Let = be a real number. If |z| < ¢ for each € > 0, then = = 0.
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Solution: We will prove this by method of contradiction. Suppose that x # 0. Let € = %
Then € > 0. Note that |z| > e- a contradiction to the hypothesis that |z| < e for each € > 0.
It follows that = = 0.

Problem: Let x and a be real numbers. Suppose that x < a + € for all positive numbers
€. Prove that x < a.

Problem: Let a and b be two real numbers such that |a — b| < ¢ for each € > 0. Show
that a = b.

Interval: A set S of real numbers is an interval if and only if S contains at least two points
and for any two points x,y € S, every real number between x and y also belongs to S i.e.,
{z:x<z<y}CS.

Example: Consider the set S =Q or S =Z or S = N. None of them are intervals.

Example: Consider the set S = {z : a < < b} = (a,b). It is called open interval.
(—00,al. (—o0,00).

(0,1)U (2,3).

above if

there is a real num i an upper

yove, since
there is i > 202 ¢ have x < M for all x € S.
bers. Then S is said to be bounded below e is a real

numbc h for all he number m is called an lower nd of the
below.

this case,

there is 3 o, ify! > 0 such

€ S such

an upper b i.e. : n element

of S. It is to be noted that 1 is the supremum of S.

Let us take another example. Let S = N. Then sup N = oo.

Let S={%:neN}. ThensupS =1.

infemum or greatest lower bound:

Exercise: Prove that a finite set always contains its supremum and infemum.

Question: Does every set that is bounded above have a supremum?

Let us consider the set S = {x € Q : # > 0 and 2% < 2}. Clearly S is non-empty set of
rational numbers that is bounded above. Note that any positive rational number y such that
y? > 2 is an upper bound of S.

Claim: S does not have any supremum in the set of rational numbers. Let p € Q be the

supremum of S and let
_, P2
q — p — nlL9’
P =
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Then ¢ is also a rational number. Now,

2 5 (42?207 -2)
C(p+2? T (p+2)?

Using the equations for ¢ and g% — 2 reveals the following:

if p? < 2, then ¢ > p and ¢ < 2

if p2 > 2, then ¢ < p and ¢ > 2

Completeness axiom: Each non-empty set of real numbers that is bounded above has a
supremum.

Archimedian property of real numbers: If ¢ and b are positive real numbers, then
there exists a positive integer n such that na > b.

Application: for any € > 0, there is a natural number NV such that

for all n > N.

Let € > 0. The property, there is a positive integer

Ne>1

for all n .

Proof of 2 e that
0<a<d such
that na > N} is

that, M — a finiti upper

bound of S. Cose i ] i plies
that

Since (k+1)a € S- i j i itive integer
n such tha

By definition there are real numbers k, K such that £ < x < K for all x € S. Let
M = max{|k|,|K|}. We have x > k and so —x < —k < |k| < M which implies that z > —M.
Also x < K < M. Hence we have

—-M<z<M=l|z|<M

for all x € S (Verify!).
Also note that for all x € S,

M <x<M=—z¢c[-M, M|
ie, S C[-M,M].
Exercise: Let S be a set bounded above. Prove that
(a) for any A > 0, sup AS = Asup S.

(b) for any A < 0, inf AS = AsupS
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Solution: (a) Let A > 0 and let sup S = M. Then
< M
for all x € S and therefore
Az < AM (1)
This implies that AM is an upper bound of \S.

Now, let € > 0 be arbitrary. Then there exists an element y € .S such that

g
sMm-=
Y A

which implies that

Ay >AM —¢ (2)
From (1) and (2) we find that AM is the least upper bound of AS i.e.,

®3)
(4)
Az > dm (1)
This implies that Am is a lower bound of AS.
Now, let € > 0 be arbitrary. Then there exists an element y € S such that
<m+ =
Y )
which implies that
Ay <Adm+e (2)

From (1) and (2) we see that Am is the greatest lower bound of AS i.e.,
inf AS = Am = Ainf S.
(b) Let A < 0 and let inf S = m. Then

r>m
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for all x € S and therefore
Az < Am (3)
This implies that Am is an upper bound of AS.

Now, let € > 0 be arbitrary. Then there exists an element y € .S such that

<m —+ £
Y Y

which implies that
Ay>AIm—e¢ (4)

From (3) and (4) we see that Am is the least upper bound of AS i.e.,

sup AS = Am = Ainf S.

(2) for any A

Exercise: Le

Solution:

bound for A.

Finally,

Consequences @

(1) Gi

Solution: Apply Archimedian property taking b = 1 and a = x. Then there is n € N such
that nz > b= 1. Hence =z > %

(2) The set N is not bounded above in R.

Solution: We prove this result by contradiction. Assume that N is bounded above in R.

median property:

Then by completeness axiom, N has a supremum, say, M. Then for each k£ € N, we have
k < M. Now, note that M —1 < M and therefore, M — 1 is not an upper bound of N and
hence there exists N € N such that N > M —1. This implies that N4+1 > M. Since N+1 € N,
we conclude that M is not an upper bound of N-a contradiction. This contradiction proves
that our assumption is wrong. Thus N is not bounded above.

(3) Density property of Q: Given a,b € R with a < b, there exists r € Q such that
a<r<hb.

Solution: Since b — a > 0, there exists n € N such that n(b —a) > 1. Let k = [na] and

m =k + 1. Then clearly, na < m. Now, we claim that m < nb
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| | | |
| | | l

[na] na m nb

Y

Suppose that m > nb. Then

1=(k+1)—k=m—-k>nb—na=n(b—a)>1

-a contradiction. Hence we have m < nb. Thus, we have na <m < nbor a < * <b.

(4) Density property of I: Given a,b € R with a < b, there exists ¢t € I such that
a<t<hb.

Solution: Consider the real numbers a — v/2 < b — v/2 and apply the result (3). Let us
work out the details.

V2. This

By the density of rational numbersgtheregissnesQ such that a — v2 < r < b
i bpose that

implies that a < r + V2 we claim that r + rational. Let us

the result

must have
p>wx It
dof N-a

rty, S has
€ S such
x. If not,

1Ice we get

exists an

. Let M be another upper
stsn € N
such that 1 — M > L or M <1—L and 1 -1 € (0,1) - this is contradiction to the fact that
M is an upper bound of (0,1). Then we must have M > 1. Hence sup(0,1) = 1.

For the next part, note that 0 is a lower bound of (0,1). Let m be a lower bound of (0, 1).
We claim that m < 0. If not, then m > 0. Then there exists n € N such that m > % and
1 € 5 - a contradiction to the fact that m is a lower bound of (0,1). Then we must have
m < 0. Hence inf(0,1) = 0.

Exercise: Let S be a bounded set. Prove that

supS —inf S =sup{z —y: z,y € S}.

Solution: Let sup S = M and inf S =m. Then x < M forallz € Sandy > mor —y < —m
for all y € S. Adding we get, x —y < M — m for all z,y € S. This shows that M —m is an

upper bound of the set sup{e:—y:x y e S}
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13

Let € > 0 be arbitrary. Then there exists elements xg,y, € S such that z9 > M — 5 and
Yo < m+ 5 and so —yo > —m — 5. Adding this two, we get zg — yo > (M —m) — ¢ and
xo— Yo € S. Hence supS —inf S =M —m =sup{z —y:x,y € S}.

Exercise: Let A and B be two non-empty subsets of R and let a« < b for all a € A and
b € B. Prove that sup A < inf B.

Solution: Let b € B be fixed. Then it is to be noted that b is an upper bound of A.
Therefore, sup A < b. This is true for all b € B. This shows that sup A is a lower bound of
B. Hence sup A < inf B.

Exercise: Let z,y € R be such that x <y + % for all n € N. Prove that z <.

Solution: If possible, suppose that > y. Then « —y > 0. Therefore, there exists n € N,
such that n(z — y) > 1 which implies that © > y + % - a contradiction to the hypothesis.
Hence we must have x < y.

Exercise: Let A, B € R be bo

and sup B.

ation between sup(A4 U

Exercise: Let A, B X" be non-empty. Define

acAbeBt=|J@+B)=JA+D).
a€A beB

Hence sup(b+ A) = b+ M
Exercise d the supremum of the set R .
Solution: Note that {1 — 1 :ne N} ={1} +{-1:neN}.
sup{—1 :n e N} =sup(-1){2 :n e N} = (-1)inf{l :neN} =0
Exercise: Let My = sup A and M, = sup B. Show that A + B is bounded above and that

sup(A + B) = My + Ms.

Exercise: Show that sup{l + -5 :n € N} =2 and inf{l — 5 :ne N} = 1.
Exercise: Find inf{x + 27! : 2 > 0}. Is the set bounded above?

__Exercise: Find inf and sup of {"+% : i n € N}
Dr. Pratikshan Mondal, real.analysis77@Qgmail.com Study material



real.analysis77@gmail.com

Real Analysis

—c| < 4}
for some ¢ > 0 is e it by Ns(c)
It is clear th 16 > 0. The set Ns(c) — {c} = (¢ =, ) e., the set
{reR:0 i led a deleted d-nbd. of c.
(¢) C A for some § > 0.

of a point ¢ and if A C B, then B is also a nbd.

ion and i ion of two nbds. of a point is af a nbd. of
that p s Sy

x /
*—0 o
x

Examp
Consider the
Consider the

(1) If A is a nbd. of a point x, then z € A.
(2) If A, B are two nbds of z, then AN B, AU B are also nbds of z.
Let A, B are two nbds of z. Then there are d1, o > 0 such that

(x—01,z+01) CA
(x — 02,2+ 02) C B
Let § = min{dy,d2}. Then 6 > 0 and § < §; and § < 3. Then
(x—d,z+d) C(x—d,z+61)CA
Let ye (x —d,24+96). Then |z —y| <0 <6 = |z —y|<d =y € (x — 61, + 1)

(=80 x+d)C(r—"0,z+8)CB
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which implies that
(x—9d,z+9)C ANB.
Hence AN B is a nbd. of x.

Open set and Closed set: Let 2y be a real number and let € > 0. If a set .S contains
an e-neighbourhood of xg, then S is a neighbourhood of xy, and xg is an interior point of S.
The set of interior points of S is the interior of S, denoted by S°. If every point of S is an
interior point (that is, S° = 9), then S is open. A set S is closed if S¢ is open.

Let S be a set and xg € S. Then z is said to be an interior point of S if there is a § > 0
such that

.%‘06(1)0—5,:1)0+5)CS
To—€ To+e€

= four line segments
x¢ is an interior point

S = (0,1) U (5,6) U {10}

Let S

Let y € (x —

,l)c = (—0070] U [15 OO)

(—OO, 1]
Example: An open interval (a,b) is an open set, because if zg € (a,b) and € < min{zy —
a,b— x0}, then
(xo —€, 20 +¢€) C (a,b).
The entire line R = (—o00,00) is open, and therefore ) (= R¢) is closed. However, () is also
open, for to deny this is to say that () contains a point that is not an interior point, which is
absurd because () contains no points. Since ) is open, R (= ()¢) is closed.
Thus, R and @) are both open and closed. They are the only subsets of R with this property.
Theorem:
(a) The union of open sets is open.
(b) The intersection of closed sets is closed.

T | bi lect i nfini ; | closed
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Proof. (a) Let G be a collection of open sets and
S=U{G:Geg}.

Let xg € S be arbitrary. Then zg € Gy for some Gy in G. Since Gy is open, it is an interior
point of Gy. So there is € > 0 such that

$0€(IBO—8,ZL‘0+8)CGQCS

i.e., zg is an interior point of S and therefore S is open, by definition.

(b) Let us recall DeMorgan’s Theorem:

QJGOC=Evﬁ ;md<ofoczgﬂ?

Let F be a collection of closed sets and T'=N{F : F € F}. Then T° = U{F°: F € F} and,

since each F° is open, T° is o T.is closed, by definitio O
Example: If —ooi< a < b < oo, the set
[a, 0] ={z:a <z <b}
is closed, si ent' is the union of the open sets (—oo, a) and e say that

[a,b) = {zx:a <z <b}

g, < b < 00, as is

open set. ( on of open

intervals.) ollection of closed intervals
is clos

It can be shown that the intersection of finitely many open sets is open, and that the union
of finitely many closed sets is closed. However, the intersection of infinitely many open sets
need not be open, and the union of infinitely many closed sets need not be closed. Let us
consider the following example:

Let us consider a family of open sets {(—%, l) :n € N} in R. Then

n

N

=1
It is clear that
~ 11
0 _> =
{}cg(n%)
Let z € N2, (=1, 1). Then
1
0<|z] < =

U
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for all n € N.
Now, let € > 0 be arbitrary. Then there exists an N € N such that

for all n > N. Hence

foralln > N i.e.,

Then z = 0. Hence

(b) point
set of boundary points of S is the bounda enoted

. denoted by S, is S = SUIS.
(c) o that

possessing n

Bolzano- S A bounded infinite set has
Example: st one
limit point. It is ver point

of S.
Let ¢ i er-the-neigh h ¥ edian

1 1 1
— — — — — — >
€<N<€:>N€(5,6):>n€(€,€)Vn_N

which shows that (—e,e) NS is an infinite set. Hence 0 is a limit point of S.
Example : Let S = {sin®F : n € N} = {-1,0,1}.
Consider the sequence {sin’y" : n € N} = {1,0,-1,0,1,0,—1,---}
For all n € N, the intersection

1 1
Ty € (.’Eo—,’—L,wo-i-E)ﬁS

is infinite.
1
0 < |.’En — .’Eo| < —
n
Derived set: The set of all limit points of a set S is called the derived set of S and is

denoted by S’
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Closure of a set: Let S be a set. Then the closure of the set S is denotes by S and is
defined by
S=5uUs".
Example : Let S ={L + 1 :m neN}. Then find S
Solution: Let € > 0 be arbitrary.
Case 1: Let m be fixed. Then there is N € N such that

! <
— <e.
N

1 1 1 1 1 1 1 1 1 1 1 1
——e< —F =< —Fe=> —F—-¢c|——¢,—+e|=>—F—€c|——¢,—+€|Vn>N
m m N m m N m m m n m m

which implies that % is a limit point of the set S.

N such that

MTNE
point of the set S.
={1:neN}u{o}.
= {3 + 5 :m,n € N}L
' = (0,1) U {2}.

or a limit
and only
open and
closed.; Th

Example: Let S = (—oc0, —1] U (1,2) U {3}. Then
(a) The set of limit points of S is (—o0, —1] UL, 2].
(b) 9S ={-1,1,2,3} and S = (—o0, —1] U [1,2] U {3}.
(c) 3 is the only isolated point of S.
(d) The exterior of S is (—1,1) U (2,3) U (3,00).

Example For n > 1, let

1 1 >
I, = = = ) 1.
" [2n+1’2n] and 5= L

n=1

Then

(a) The set of limit points of S is S U {0}.
(b) 0S={r:z=0orx=1/n (n>2)} and S = SU {0}
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(¢) S has no isolated points.
(d) The exterior of S is

(—o0,0)U l[j (271—:_2’ ﬁ>

n=1

(1)

Example: Let S be the set of rational numbers. Since every interval contains a rational
number, every real number is a limit point of S; thus, S = R. Since every interval also contains
an irrational number, every real number is a boundary point of S; thus 0S5 = R. The interior

and exterior of S are both empty, and S has no isolated points. S is neither open nor closed.

Set £ Closed? Open? E E® OF

(_171) NO YES [_1;1] (_171) {_171}

[0,1] g \ _ {0,1}

{_13 %a 1}

BU{1}

of xg such that xg
of S.

prove this"w v . en xg
must have a neighbourhood, say V,,, such that V,, NS = ¢ and hence V;, C S¢. This shows
that z¢ is an interior point of S¢ and therefore, S¢ is open, and hence S is closed. (]

The above Theorem can also be stated as follows:
Corollary: A set is closed if and only if it contains all its limit points S.
Example: The set of integers Z is closed. Note that

Z° = U(n,n+1).

neL

Since (n,n + 1) is open for each n € Z, it follows that Z¢ is open and hence Z is a closed set.

In a similar way, it can be shown that

N¢ = (—o0,1) U (U(n,n+1))

N
TETY
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which implies that N is closed.

Note: Above Theorem and Corollary are equivalent. However, we stated the theorem as
we did because students sometimes incorrectly conclude from the corollary that a closed set
must have limit points. The corollary does not say this. If S has no limit points, then the
set of limit points is empty and therefore contained in S. Hence, a set with no limit points is
closed according to the corollary, in agreement with Theorem. For example, any finite set is
closed.

Some important theorems:

Theorem: Let A and B be two sets of real numbers.

(1) If A C B then A’ C B'.

(2) (AuB) =A'UB.

(3) (AnB) Cc AAnB.
The equality in (3) does not.t . et A= (1,2) and B = (2, 3).Then
A =[1,2] and B’ = | o ' 4N B = ¢. So ( B)' = ¢.

The equality i ' i a , 2,3).Then
A=] d ¢. Hence

Show that

hen there

exists

rE€(x—éep,x+e,) CG={a}C(x—ep,x+e,) CG

which implies that

U{x}:GC U(x—5$,m+€$)CG=>G= U(x—€$,x+sx).

zeG zeG zeG

This shows that G is an union of open sets and hence is an open set. O

Interior of a set: Let S be a set of real numbers. Then the set of all interior points of S
is denoted by S° and is called interior of S.
Lets verify the following properties:
Theorem: Let A and B be two subsets of real numbers. Following statements hold good:
(a) If A C B, then A° C B°.

(b) A°UB° Cc (AUB)®°
Dr. Pratikshan Mondal, real.analysis77@Qgmail.com Study material
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(¢c) A°NB° =(ANB)°.
Proof. Left as an exercise. O

Note: It is to be noted that equality in (b) need not hold in general. For example, let
A =1[0,1], B = [1,2]. Then A° = (0,1),B° = (1,2). Again AU B = [0,2] and hence
(AU B)° = (0,2). It then follows that A° U B° # (AU B)°.

Theorem: The interior of a set is an open set.

Proof. If S° = ¢, then there is nothing to proof.

So, let us suppose that S° # ¢. Let x € S°. Then «x is an interior point of .S and therefore
there exists an € > 0 such that z € (z—¢,x+¢) C S. Since (x —e,x+¢) is an open set, it is a
neighbourhood of each of its points. Since (z—¢,x+¢) C S, it follows that (x—e,24¢) C S°.

This shows that z is an interior point of S°. Hence S° is an open set. O

Theorem: The interior of 1s the largest open

€) is an open set, (it is a

(x—e,x+¢).
the set (x —e,

e s
O
Now let § =5 =
A set S is open i
, and

(a) S=(-1,2)U[3,00).
(b) S = (—00,1)U (2,00).
(¢) S=1[-3,-2]U]T,8§]
(d) S="7Z.

Exercise:

(a) Show that the intersection of finitely many open sets is open.
(b) Give an example showing that the intersection of infinitely many open sets may fail
to be open.
Exercise:
(a) Show that the union of finitely many closed sets is closed.

(b) Give an example showing that the union of infinitely many closed sets may fail to be

closed
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Exercise: Find the set of limit points of S, 95, S, the set of isolated points of S, and the

exterior of S.

(a) S= ( 00, —2) U (2,3) U {4} U(7,00).

(b) S

(c) S= U{(n n+1):neZ}
)

d S={z:z=1/n,n=1,2,3,...}.

Exercise:

(a

Prove: A limit point of a set S is either an interior point or a boundary point of S.
Prove: An isolated point of S is a boundary point of S°.

A boundary point of a set S is either a limit point or an isolated point of S.

A set S is closed if and only if S = S.

; ; aset S if every
point in S is contained in a set G belonging to G; that is, if S C U{G : G € G}. The open
cover G has a finite subcover if S is contained in the union of a finite number of sets inG.
In other words, a collection G of open sets is an open cover of S if S C U G. The open
Geg
cover G has a finite subcover if there exists G1,Ga, - ,G, in G such that S C U G;. To say
i=1
another way, Gy is a finite subcover if Gy C G, the set G is finite and S C U G.

GeGo
Example: The sets

51:[0,1],52:{1,2,...,TL,...},

S3={1,1...,1,...}, and S4=(0,1)

2’ n
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are covered by the families of open intervals
1 1 e
Hi=<lz— =2+ =] |0<z<1lp, (N=positive integer),

N N
n:1,2,...},

1 1
#o={(n- o)

and

Ha={(0,p)|0 < p <1},

respectively.

There are many possible open or any give eal numbers. For the

(0,1), all the following co OIS are open covers

It is impo

G4 contains

from this collect
Example: The
finite subcover.

If possible suppose that, this statement is not true. Then there is a finite collection, say,
{( L 1) 1< < k} of G; which covers (0,1). Let m = max{n; : 1 <i < k}. Then

n_i’
k
1 1
U (1) = (5r):
=1 \Th m

It follows that no finite subset of G; can cover (0,1). Hence (0,1) is not compact.

Let us now take an example of a compact set.

Example: Show that the set S = {1 :n € N} U{0} is compact.

Answer: Let G be an open cover of S. Then there is Gy € G such that 0 € Gy. Since G
is an open set, there is an r > 0 such that (—r,7) C GoWe can choose a positive integer N

such that % < r for all n > N. Since G is an open cover of S, there exists G1,Gs, -+ ,Gx in
1
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finite subcover of S. Since the open cover G was taken arbitrarily, it follows that every open
cover of S has a finite subcover. Hence the set S is compact.

Theorem: A closed subset of a compact set is compact.

Proof. Let S be a compact set and let E be a closed subset of S. Let G be an open cover of
E. Then the collection GJ{E°} is an open cover of S. Since S is compact, this collection
has a finite subcover G; of S. Now, the collection Gy \ {E¢} is a finite subcover of G. Since G
was taken arbitrarily, it follows that every open cover of E has a finite subcover. Hence E is

compact. O

Heine-Borel Theorem: Every closed bounded set of real numbers is compact i.e., if G
is an open covering of a closed and bounded subset S of the real line, then S has an open

covering G consisting of finitely many open sets belonging to G.

Proof. We first show tha
cover of [a,b]. Let

b] is compact. Let G be an open

Since ¢ € E, the interval [a, ¢] be covered
= [a,c]UJc, 2] and [c, 2] C (2 — g) C G,.

such that subset of
a compact set O

Henceforth, eine—Borel
theore ) that also

covers S. This theorem and its converse show that we could just as well define a set S of
reals to be compact if it has the Heine-Borel property; that is, if every open covering of S
contains a finite subcovering. The same is true of R™. This definition generalizes to more
abstract spaces (called topological spaces) for which the concept of boundedness need not
be defined.

The Bolzano—Weierstrass Theorem: As an application of the Heine—Borel theorem,
we prove the following theorem of Bolzano and Weierstrass.

Theorem: Every bounded infinite set of real numbers has at least one limit point.

Proof. We will show that a bounded nonempty set without a limit point can contain only a
finite number of points. If S has no limit points, then S is closed and every point « of S has
an open neighborhood N, that contains no point of S other than z. The collection

H={N,:xe S}
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is an open covering for S. Since S is also bounded, Heine-Borel theorem implies that S can
be covered by a finite collection of sets from H, say Ny, ..., Ny, . Since these sets contain

only z1, ..., z, from S, it follows that S = {z1,...,z,}. O

Exercise: Let {z,, : n € N} be a sequence of real numbers such that x,, — xo. Prove that
{n:n=0,1,2,---} is compact.

Idea of countable sets, uncountable sets and uncountability of R: Are there more
rational numbers than there are integers? How about real numbers; are there more of them
than there are of rationals? Are there fewer numbers in the interval (0,1) than in (0,2) or
than in R itself? Mathematicians would say that the answers to these questions are no, yes,
and no, respectively, but what do these answers-and the questions-mean? Read on, and leave

your intuition behind; it won’t help much here.

Sets that we can match up with ) ,- -+ } are especially i

th {1,2,--- ,n} are the

same size

Oh well, B h

(c) The set Z of all integers is also countably infinite. The Figure given below shows a
one-to-one function f from Z onto N. We have found it convenient to bend the picture of Z.

This function can be given by a formula, if desired:

2n+1 for n>0
f(n) =
—2n forn <0

Even though Z looks about twice as big as N, these sets are of the same size. Beware! For
infinite sets, your intuition may be unreliable. Or, to take a more positive approach, you may

need to refine your intuition when dealing with infinite sets.
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-3 _Q —5 —6 Z

There are sets that are uncountable, i.e., not the same size as N. Let us take the following
example:
Example: The interval [0, 1) is uncountable. If it were countable, there would exist a one-

to-one function f mapping N onto [0,1). We will show that this is impossible. Each number in

2,d33, .
We ng he e b o 7 1, let

The p . . i sion for a
numbe at 1s differe igi I S a cannot
be one of ' ; 1L map ,1). Thus

[0,1) is un
The proof ¢ 1 intervals
[a’7 b]7 [0'7 b)7 (a’7 b er way to

show that these sets a ountable is to show that the n one-to-one co

with e intervals.
Showing the existence of such one-to-one correspondences can be challenging. We provide a
couple of the trickier arguments in the next example and ask for some easier ones in Exercise
3.

Example: (a) It is easy to show that (0,1) and (0,2) are the same size; the function f
defined by f(z) = 2z gives a one-to-one correspondence from (0, 1) onto (0, 2). More generally,
the linear function f(x) = ax + b with a > 0 maps (0, 1) one-to-one onto (b, a + b).

(b) We can show that [0,1) and (0,1) have the same size. No simple formula provides us

with a one-to-one mapping between these sets. The trick is to isolate some infinite sequence
1 111
VR 5993540
complement fixed. That is, let

in (0,1), say %, %, - and then map this sequence onto 0 -, while leaving the

Cz(O,l)\{%:n:1,2,3,~-~}
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and define

0 if m=%
flz)=4¢ -1 if =1 for some integer n >3
x ifxeC

©.n=CcuU {%%li}
o
0.)=CU {0, %57}

0, H)— [0, 1)

> ‘ N into A. Let
B = f(N) ) s ecti d therefore the

non-empt
{1,2,---,n}. If T ={1,2,--- ,n}, we can define 4; = A, for i > n and obtain a family
{A; : i € N} with the same union. Thus we may assume that I = N. Each set A4; is finite or

countably infinite. By repeating elements if A; is finite, we can list each A; as follows:
A; = {awi, agi, azi, agi, -}

The elements in UA; can be listed in an array as in Figure given below. The arrows in the

figure suggest a single listing for UA;:
ai1,012, 021, a31, G422, 13, G414, 423, A32, 041, " " - (*)

Some elements may be repeated, but the list includes infinitely many distinct elements, since
UA; is infinite. Now a one-to-one mapping f of N onto UA; is obtained as follows: f(1) =
a11, f(2) is the next element listed in (x) different from f(1), f(3) is the next element listed

in (%) different from f(1) and f(2), etc
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LY
C////
///
C///

Gay,

Thus we get a one-to-one mapping from N onto UA; which shows that UA; is countable. [

Example: We use the above theorem to show that the set Q of all rational numbers is

countable. To show this we fizs @ of all positive rationa

countable. Now for each

— 2 3 n
A= i)
— 2 3 n
A2— 3999 75}
2 3 n

33 E}

As

(——;

eI
=l

=3

e., the set

It is clear

bijection.

) € NxN.

23" = 2P 3

= 2™ = 397

:}m:p’n:q

= (m,n) = (p, q).

Note that f(N x N) is a proper subset of N since the elements 5,7, 10,--- are not in f(N x N).
Hence f : Nx N — f(N x N) is a bijective mapping. Since subset of a countable set is
countable, the set f(N x N) is countable. Hence N x N is countable.

Exercise: Give one-to-one correspondences between the following pairs of sets:

(a) (0,1) and (—1,1) (b) [0,1) and (0, 1]
(¢) [0,1] and [—5, §] (d) (0,1) and (1, o)
(e) (0,1) and (0, c0) (f) R and (0, 00).

Exercise: Let E = {n € N: n is even}. Show that F and N\ E are countable by exhibiting

one-to-one correspondences f: N — F and g: N> N\ E
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Exercise: Show that if there is a one-to-one correspondence of a set .S onto some countable
set, then S itself is countable.

Exercise: Prove that if f maps S onto T" and S is countable, then T is countable.
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