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For any real number x, |x| = x if x ≥ 0 and = −x if x < 0. It is clear that |x| ≥ 0 for all

x. Also |x| = 0 if and only if x = 0.

Properties: The absolute value functions has the following properties:

(i) −|a| ≤ a ≤ |a| for every real number a.

(ii) |ab| = |a||b| for all real numbers a, b.

(iii) | − a| = |a| for all real numbers a.

(iv) Let c > 0. Then |a| < c ⇐⇒ −c < a < c and |a| ≤ c ⇐⇒ −c ≤ a ≤ c

Triangle inequality: For any two real numbers a and b, |a+ b| ≤ |a|+ |b|.
Proof: Let a and b be two real numbers. Then by property (i), we have

−|a| ≤ a ≤ |a| and − |b| ≤ b ≤ |b|.

Now adding, we get

−(|a|+ |b|) ≤ a+ b ≤ |a|+ |b|.

Finally, applying property (iv), we get

|a+ b| ≤ |a|+ |b|.

Reverse Triangle inequality: For any two real numbers a and b,
∣∣∣|a| − |b|

∣∣∣ ≤ |a− b|.
Proof: Let a and b be two real numbers. Then by triangle inequality, we have

|a| = |a− b+ b| ≤ |a− b|+ |b| and |b| ≤ |a− b|+ |a|.

This two inequalities can be written as

|a| − |b| ≤ |a− b| and |b| − |a| ≤ |a− b|

which yields that

−|a− b| ≤ |a| − |b| ≤ |a− b|.

Hence again by property (iv), we have∣∣∣|a| − |b|
∣∣∣ ≤ |a− b|.

∣∣∣|a| − |b|
∣∣∣ ≤ |a− b| ≤ |a|+ |b|.

Problem: Let A and B be two nonempty sets of real numbers and let L be a real number.

Suppose that there exists positive real numbers x, y such that |a − L| < x for all a ∈ A and

that |2b− L| < y for all b ∈ B. Show that |a− 4b| < x+ 2y + |L| for all a ∈ A and b ∈ B.

Solution: Let a ∈ A and b ∈ B. Then we have

|a− 4b| = |a− L+ 2L− 4b− L| ≤ |a− L|+ 2|2b− L|+ |L| < x+ 2y + |L|.

Problem: Let S be a nonempty set of real numbers and let a be a nonzero real number.

Suppose that |x− a| < |a|
2 for all x ∈ S. Prove that |x| > |a|

2 for all x ∈ S.

Problem: Let x be a real number. If |x| < ε for each ε > 0, then x = 0.
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Solution: We will prove this by method of contradiction. Suppose that x ̸= 0. Let ε = |x|
2 .

Then ε > 0. Note that |x| > ε- a contradiction to the hypothesis that |x| < ε for each ε > 0.

It follows that x = 0.

Problem: Let x and a be real numbers. Suppose that x < a+ ε for all positive numbers

ε. Prove that x ≤ a.

Problem: Let a and b be two real numbers such that |a − b| < ε for each ε > 0. Show

that a = b.

Interval: A set S of real numbers is an interval if and only if S contains at least two points

and for any two points x, y ∈ S, every real number between x and y also belongs to S i.e.,

{z : x ≤ z ≤ y} ⊂ S.

Example: Consider the set S = Q or S = Z or S = N. None of them are intervals.

Example: Consider the set S = {x : a < x < b} = (a, b). It is called open interval.

(−∞, a]. (−∞,∞).

(0, 1) ∪ (2, 3).

Boundedness: Let S be a set of real numbers. Then S is said to be bounded above if

there is a real number M such that x ≤ M for all x ∈ S. The number M is called an upper

bound of the set S.

The sets N,Z are not bounded above. The set S = (−∞, 2021) is bounded above, since

there is M with M ≥ 2021 we have x ≤ M for all x ∈ S.

Let S be a set of real numbers. Then S is said to be bounded below if there is a real

number m such that x ≥ m for all x ∈ S. The number m is called an lower bound of the

set S.

The set N is bounded below but not bounded above. The set Z is not bounded below.

A set S is said to be bounded if it is both bounded below and bounded above. In this case,

there is a real number M > 0 such that |x| ≤ M for all x ∈ S (Verify!) i.e., if ∃M > 0 such

that ∀x ∈ S, we have |x| ≤ M .

A set which is not bounded is said to be unbounded. In this case, ∀M > 0 ∃x ∈ S such

that |x| > M .

Supremum or least upper bound: A real number M is said to be the supremum of a

non-empty set S if

(1) M is an upper bound of S,

(2) no number less than M is an upper bound of S i.e., for any ε > 0, there is an element

y ∈ S such that y > M − ε.

In this case we write, supS = M .

For example, let S = (0, 1). Then note that 2 is an upper bound of S but it is not supremum

of S. It is to be noted that 1 is the supremum of S.

Let us take another example. Let S = N. Then supN = ∞.

Let S = { 1
n : n ∈ N}. Then supS = 1.

infemum or greatest lower bound:

Exercise: Prove that a finite set always contains its supremum and infemum.

Question: Does every set that is bounded above have a supremum?

Let us consider the set S = {x ∈ Q : x > 0 and x2 < 2}. Clearly S is non-empty set of

rational numbers that is bounded above. Note that any positive rational number y such that

y2 > 2 is an upper bound of S.

Claim: S does not have any supremum in the set of rational numbers. Let p ∈ Q be the

supremum of S and let

q = p− p2 − 2

p+ 2
.
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Then q is also a rational number. Now,

q2 − 2 =
(2p+ 2)2

(p+ 2)2
− 2 =

2(p2 − 2)

(p+ 2)2
.

Using the equations for q and q2 − 2 reveals the following:

if p2 < 2, then q > p and q2 < 2

if p2 > 2, then q < p and q2 > 2

Completeness axiom: Each non-empty set of real numbers that is bounded above has a

supremum.

Archimedian property of real numbers: If a and b are positive real numbers, then

there exists a positive integer n such that na > b.

Application: for any ε > 0, there is a natural number N such that∣∣∣∣ 1n − 0

∣∣∣∣ = 1

n
< ε

for all n ≥ N .

Let ε > 0. Then by Archimedian property, there is a positive integer N such that

Nε > 1

which implies that
1

N
< ε.

Hence there is positive integer N such that

1

n
< ε

for all n ≥ N . This proves that the sequence { 1
n} is convergent and converges to 0.

Proof of Archimedian property: The result is trivial if a ≥ b > 0. Let us assume that

0 < a < b. We proof the result by contradiction. Suppose there is no positive integer n such

that na > b. Then na ≤ b for every positive integer n. This imply that the set {na : n ∈ N} is

bounded above by b. By the completeness property, the set S has a supremum, say, M . Note

that, M − a < M . Now by the definition of supremum, the number M − a is not an upper

bound of S. Cosequently, there is a positive integer k such that ka > M − a which implies

that

M < ka+ a = (k + 1)a.

Since (k+1)a ∈ S-this contradicts the fact that M = supS. Hence there is a positive integer

n such that na > b.

By definition there are real numbers k,K such that k ≤ x ≤ K for all x ∈ S. Let

M = max{|k|, |K|}. We have x ≥ k and so −x ≤ −k ≤ |k| ≤ M which implies that x ≥ −M .

Also x ≤ K ≤ M . Hence we have

−M ≤ x ≤ M =⇒ |x| ≤ M

for all x ∈ S (Verify!).

Also note that for all x ∈ S,

−M ≤ x ≤ M =⇒ x ∈ [−M,M ]

i.e., S ⊂ [−M,M ].

Exercise: Let S be a set bounded above. Prove that

(a) for any λ > 0, supλS = λ supS.

(b) for any λ < 0, inf λS = λ supS.
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Solution: (a) Let λ > 0 and let supS = M . Then

x ≤ M

for all x ∈ S and therefore

λx ≤ λM (1)

This implies that λM is an upper bound of λS.

Now, let ε > 0 be arbitrary. Then there exists an element y ∈ S such that

y > M − ε

λ

which implies that

λy > λM − ε (2)

From (1) and (2) we find that λM is the least upper bound of λS i.e.,

supλS = λM = λ supS.

(b) Let λ < 0 and let supS = M . Then

x ≤ M

for all x ∈ S and therefore

λx ≥ λM (3)

This implies that λM is a lower bound of λS.

Now, let ε > 0 be arbitrary. Then there exists an element y ∈ S such that

y > M − ε

−λ

which implies that

λy < λM + ε (4)

From (3) and (4) we see that λM is the greatest lower bound of λS i.e.,

inf λS = λM = λ supS.

Exercise: Let S be a set bounded below. Prove that

(a) for any λ > 0, inf λS = λ inf S.

(b) for any λ < 0, supλS = λ inf S.

Solution: (a) Let λ > 0 and let inf S = m. Then

x ≥ m

for all x ∈ S and therefore

λx ≥ λm (1)

This implies that λm is a lower bound of λS.

Now, let ε > 0 be arbitrary. Then there exists an element y ∈ S such that

y < m+
ε

λ

which implies that

λy < λm+ ε (2)

From (1) and (2) we see that λm is the greatest lower bound of λS i.e.,

inf λS = λm = λ inf S.

(b) Let λ < 0 and let inf S = m. Then

x ≥ m
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for all x ∈ S and therefore

λx ≤ λm (3)

This implies that λm is an upper bound of λS.

Now, let ε > 0 be arbitrary. Then there exists an element y ∈ S such that

y < m+
ε

−λ

which implies that

λy > λm− ε (4)

From (3) and (4) we see that λm is the least upper bound of λS i.e.,

supλS = λm = λ inf S.

Exercise: Let S be a bounded set. Prove that

(1) for any λ > 0, supλS = λ supS, inf λS = λ inf S.

(2) for any λ < 0, inf λS = λ supS, supλS = λ inf S.

Exercise: Let S be a bounded set and let A be a subset of S. Then prove that

inf S ≤ inf A ≤ supA ≤ supS.

Solution: Let supS = M . Then

x ≤ M

for all x ∈ S and hence for all x ∈ A as A ⊂ S. Therefore, M is an upper bound of A. Hence

supA ≤ M = supS.

Now, let inf s = m. Then

x ≥ m

for all x ∈ S and hence for all x ∈ A. This shows that m is a lower bound for A. Then

inf A ≥ m = inf S.

Finally,

inf S ≤ inf A ≤ supA ≤ supS.

Consequences of Archimedian property:

(1) Given x > 0, there exists n ∈ N such that x > 1
n .

Solution: Apply Archimedian property taking b = 1 and a = x. Then there is n ∈ N such

that nx > b = 1. Hence x > 1
n .

(2) The set N is not bounded above in R.
Solution: We prove this result by contradiction. Assume that N is bounded above in R.

Then by completeness axiom, N has a supremum, say, M . Then for each k ∈ N, we have

k ≤ M . Now, note that M − 1 < M and therefore, M − 1 is not an upper bound of N and

hence there exists N ∈ N such that N > M−1. This implies that N+1 > M . Since N+1 ∈ N,
we conclude that M is not an upper bound of N-a contradiction. This contradiction proves

that our assumption is wrong. Thus N is not bounded above.

(3) Density property of Q: Given a, b ∈ R with a < b, there exists r ∈ Q such that

a < r < b.

Solution: Since b − a > 0, there exists n ∈ N such that n(b − a) > 1. Let k = [na] and

m = k + 1. Then clearly, na < m. Now, we claim that m < nb.
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[na] na m nb

Suppose that m ≥ nb. Then

1 = (k + 1)− k = m− k ≥ nb− na = n(b− a) > 1

-a contradiction. Hence we have m < nb. Thus, we have na < m < nb or a < m
n < b.

(4) Density property of I: Given a, b ∈ R with a < b, there exists t ∈ I such that

a < t < b.

Solution: Consider the real numbers a −
√
2 < b −

√
2 and apply the result (3). Let us

work out the details.

By the density of rational numbers, there is r ∈ Q such that a −
√
2 < r < b −

√
2. This

implies that a < r +
√
2 < b. we claim that r +

√
2 is an irrational. Let us suppose that

s = r +
√
2 ∈ Q. It follows that s − r =

√
2 ∈ Q-this is a contradiction. Hence the result

follows.

(5) For each real number x, there exists an integer n such that n ≤ x < n+ 1.

Solution: Let S = {k ∈ Z : k ≤ x}. We claim that S ̸= ϕ. If S = ϕ, then we must have

p > x for all p ∈ Z. Let t ∈ N be arbitrary. Set p = −t ∈ Z and therefore −t = p > x. It

follows that t < −x. Since t ∈ N is arbitrary, it follows that −x is an upper bound of N - a

contradiction. Thus we must have S ̸= ϕ.

It is to be noted that x is an upper bound of S. Then by completeness property, S has

a supremum, say, M . Then M − 1 is not an upper bound of S. So there exists n ∈ S such

that n > M − 1 or n + 1 > M . Also note that n ≤ x. We claim that n + 1 > x. If not,

then n + 1 ≤ x and so n + 1 ∈ S. Therefore n + 1 ≤ M - a contradiction. Hence we get

n ≤ x < n+ 1.

Exercise: Let s and t be real numbers such that s − t > 1. Prove that there exists an

integer n such that t < n < s.

Hint: Since s− t > 1, we have

s > t+ 1 ≥ [t+ 1] = [t] + 1 > t

as [t] + 1 is an integer. So it is enough to choose n = [t] + 1.

Exercise: Prove that sup(0, 1) = 1 and inf(0, 1) = 0.

Solution: It is to be noted that 1 is an upper bound of (0, 1). Let M be another upper

bound of (0, 1). We claim that M ≥ 1. If not, the we have M < 1. Then there exists n ∈ N
such that 1−M > 1

n or M < 1− 1
n and 1− 1

n ∈ (0, 1) - this is contradiction to the fact that

M is an upper bound of (0, 1). Then we must have M ≥ 1. Hence sup(0, 1) = 1.

For the next part, note that 0 is a lower bound of (0, 1). Let m be a lower bound of (0, 1).

We claim that m ≤ 0. If not, then m > 0. Then there exists n ∈ N such that m > 1
n and

1
n ∈ S - a contradiction to the fact that m is a lower bound of (0, 1). Then we must have

m ≤ 0. Hence inf(0, 1) = 0.

Exercise: Let S be a bounded set. Prove that

supS − inf S = sup{x− y : x, y ∈ S}.

Solution: Let supS = M and inf S = m. Then x ≤ M for all x ∈ S and y ≥ m or −y ≤ −m

for all y ∈ S. Adding we get, x− y ≤ M −m for all x, y ∈ S. This shows that M −m is an

upper bound of the set sup{x− y : x, y ∈ S}.
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Let ε > 0 be arbitrary. Then there exists elements x0, yo ∈ S such that x0 > M − ε
2 and

y0 < m + ε
2 and so −y0 > −m − ε

2 . Adding this two, we get x0 − y0 > (M − m) − ε and

x0 − y0 ∈ S. Hence supS − inf S = M −m = sup{x− y : x, y ∈ S}.
Exercise: Let A and B be two non-empty subsets of R and let a ≤ b for all a ∈ A and

b ∈ B. Prove that supA ≤ inf B.

Solution: Let b ∈ B be fixed. Then it is to be noted that b is an upper bound of A.

Therefore, supA ≤ b. This is true for all b ∈ B. This shows that supA is a lower bound of

B. Hence supA ≤ inf B.

Exercise: Let x, y ∈ R be such that x ≤ y + 1
n for all n ∈ N. Prove that x ≤ y.

Solution: If possible, suppose that x > y. Then x− y > 0. Therefore, there exists n ∈ N,
such that n(x − y) > 1 which implies that x > y + 1

n - a contradiction to the hypothesis.

Hence we must have x ≤ y.

Exercise: Let A,B ∈ R be bounded above. Find a relation between sup(A ∪ B), supA

and supB.

Exercise: Let A,B ⊂ R be non-empty. Define

A+B = {a+ b : a ∈ A, b ∈ B} =
⋃
a∈A

(a+B) =
⋃
b∈B

(A+ b).

Find A+B when a. A = [−1, 2] = B b. A = B = N c. A = B = Z.
Exercise: Let M = supA. Let b ∈ R. Define b+A = {b+ a : a ∈ A}. Find sup(b+A).

Solution: By hypothesis, x ≤ M for all x ∈ A. Then b + x ≤ b + M for all x ∈ A.

Therefore, b +M is an upper bound of b + A. Let ε > 0 be arbitrary. Then there exists an

element y ∈ A such that

y > M − ε =⇒ b+ y > (b+M)− ε.

Hence sup(b+A) = b+M = b+ supA.

Exercise: Find the supremum of the set {1 + 1
n : n ∈ N}.

Solution: Note that {1− 1
n : n ∈ N} = {1}+ {− 1

n : n ∈ N}.
sup{− 1

n : n ∈ N} = sup(−1){ 1
n : n ∈ N} = (−1) inf{ 1

n : n ∈ N} = 0

Exercise: Let M1 = supA and M2 = supB. Show that A+B is bounded above and that

sup(A+B) = M1 +M2.

Exercise: Show that sup{1 + 1
n2 : n ∈ N} = 2 and inf{1− 1

n2 : n ∈ N} = 1.

Exercise: Find inf{x+ x−1 : x > 0}. Is the set bounded above?

Exercise: Find inf and sup of {m+n
mn : m,n ∈ N}.
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cc− δ c+ δ

q q
x

y

d

Neighbourhood of a point: Let c ∈ R. Then the set (c− δ, c+ δ) = {x ∈ R : |x− c| < δ}
for some δ > 0 is said to be a neighbourhood (or, nbd.) of the point c. We write it by Nδ(c).

It is clear that c ∈ Nδ(c) for all δ > 0. The set Nδ(c)− {c} = (c− δ, c+ δ)− {c} i.e., the set

{x ∈ R : 0 < |x− c| < δ} is called a deleted δ-nbd. of c.

A set A is a nbd. of a point c if Nδ(c) ⊂ A for some δ > 0.

Exercise: If A is a nbd. of a point c and if A ⊂ B, then B is also a nbd. of c.

Exercise: Prove that union and intersection of two nbds. of a point is again a nbd. of

that point.

−∞ +∞
t
0

The set of all real numbers

u
x

s t]

x− δ
7

x+ δ

Example:

Consider the real number 1. Then (1− 1
2 , 1 +

1
2 ) = (12 ,

3
2 ) is a nbd. of 1.

Consider the real number 0. Then (− 1
10 ,

1
10 ) is a nbd. of 0.

Is (1, 2) a nbd. of 0? No, since 0 /∈ (1, 2).

Properties of a Neighbourhood:

(1) If A is a nbd. of a point x, then x ∈ A.

(2) If A,B are two nbds of x, then A ∩B,A ∪B are also nbds of x.

Let A,B are two nbds of x. Then there are δ1, δ2 > 0 such that

(x− δ1, x+ δ1) ⊂ A

(x− δ2, x+ δ2) ⊂ B

Let δ = min{δ1, δ2}. Then δ > 0 and δ ≤ δ1 and δ ≤ δ2. Then

(x− δ, x+ δ) ⊂ (x− δ1, x+ δ1) ⊂ A

Let y ∈ (x− δ, x+ δ). Then |x− y| < δ ≤ δ1 =⇒ |x− y| < δ1 =⇒ y ∈ (x− δ1, x+ δ1)

(x− δ, x+ δ) ⊂ (x− δ2, x+ δ2) ⊂ B
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which implies that

(x− δ, x+ δ) ⊂ A ∩B.

Hence A ∩B is a nbd. of x.

Open set and Closed set: Let x0 be a real number and let ε > 0. If a set S contains

an ϵ-neighbourhood of x0, then S is a neighbourhood of x0, and x0 is an interior point of S.

The set of interior points of S is the interior of S, denoted by S0. If every point of S is an

interior point (that is, S0 = S), then S is open. A set S is closed if Sc is open.

Let S be a set and x0 ∈ S. Then x0 is said to be an interior point of S if there is a δ > 0

such that

x0 ∈ (x0 − δ, x0 + δ) ⊂ S

s
x0

x0 − ε x0 + ε

S = four line segments
x0 is an interior point

S = (0, 1) ∪ (5, 6) ∪ {10}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Set E Interior Point(s)?

(−1, 1) Every point

[0, 1] Every ponit except endpoints

N None

R Every point

Q None

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Let S = (a, b). Let x ∈ S. Then a < x < b. Let δ ≤ min{x− a, b− x}. Then δ > 0. Claim:

(x− δ, x+ δ) ⊂ S

Let y ∈ (x− δ, x+ δ). Then y > x− δ.

S = (0, 1) ∪ {2}

(0, 1)c = (−∞, 0] ∪ [1,∞)

(−∞, 1]

Example: An open interval (a, b) is an open set, because if x0 ∈ (a, b) and ϵ ≤ min{x0 −
a, b− x0}, then

(x0 − ϵ, x0 + ϵ) ⊂ (a, b).

The entire line R = (−∞,∞) is open, and therefore ∅ (= Rc) is closed. However, ∅ is also

open, for to deny this is to say that ∅ contains a point that is not an interior point, which is

absurd because ∅ contains no points. Since ∅ is open, R (= ∅c) is closed.
Thus, R and ∅ are both open and closed. They are the only subsets of R with this property.

Theorem:

(a) The union of open sets is open.

(b) The intersection of closed sets is closed.

These statements apply to arbitrary collections, finite or infinite, of open and closed sets.
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Proof. (a) Let G be a collection of open sets and

S = ∪{G : G ∈ G}.

Let x0 ∈ S be arbitrary. Then x0 ∈ G0 for some G0 in G. Since G0 is open, it is an interior

point of G0. So there is ε > 0 such that

x0 ∈ (x0 − ε, x0 + ε) ⊂ G0 ⊂ S

i.e., x0 is an interior point of S and therefore S is open, by definition.

(b) Let us recall DeMorgan’s Theorem:(⋃
i

Gi

)c

=
⋂
i

Gc
i and

(⋂
i

Fi

)c

=
⋃
i

F c
i

Let F be a collection of closed sets and T = ∩{F : F ∈ F}. Then T c = ∪{F c : F ∈ F} and,

since each F c is open, T c is open, from (a). Therefore, T is closed, by definition. □

Example: If −∞ < a < b < ∞, the set

[a, b] = {x : a ≤ x ≤ b}

is closed, since its complement is the union of the open sets (−∞, a) and (b,∞). We say that

[a, b] is a closed interval. The set

[a, b) = {x : a ≤ x < b}

is a half-closed or half-open interval if −∞ < a < b < ∞, as is

(a, b] = {x : a < x ≤ b};

however, neither of these sets is open or closed. (Why not?) Semi-infinite closed intervals are

sets of the form

[a,∞) = {x : a ≤ x} and (−∞, a] = {x : x ≤ a},

where a is finite. They are closed sets, since their complements are the open intervals (−∞, a)

and (a,∞), respectively.

This example shows that a set may be both open and closed, and the example shows that

a set may be neither. Thus, open and closed are not opposites in this context, as they are in

everyday speech.

Example: From Theorem and Example, the union of any collection of open intervals is an

open set. (In fact, it can be shown that every nonempty open subset of R is the union of open

intervals.) From Theorem and Example, the intersection of any collection of closed intervals

is closed.

It can be shown that the intersection of finitely many open sets is open, and that the union

of finitely many closed sets is closed. However, the intersection of infinitely many open sets

need not be open, and the union of infinitely many closed sets need not be closed. Let us

consider the following example:

Let us consider a family of open sets {
(
− 1

n ,
1
n

)
: n ∈ N} in R. Then

∞⋂
i=1

(
− 1

n
,
1

n

)
= {0}

It is clear that

{0} ⊂
∞⋂
i=1

(
− 1

n
,
1

n

)
.

Let x ∈
⋂∞

i=1

(
− 1

n ,
1
n

)
. Then

0 ≤ |x| ≤ 1

n
Dr. Pratikshan Mondal, real.analysis77@gmail.com Study material

real.analysis77@gmail.com


Real Analysis

for all n ∈ N.
Now, let ε > 0 be arbitrary. Then there exists an N ∈ N such that

1

n
< ε

for all n ≥ N . Hence

0 ≤ |x| ≤ 1

n
< ε

for all n ≥ N i.e.,

0 ≤ |x| < ε.

Then x = 0. Hence
∞⋂
i=1

(
− 1

n
,
1

n

)
= {0}

Definition: Let S be a subset of R. Then

(a) x0 is a limit point of S if every deleted neighbourhood of x0 contains a point of S

i.e., for each ε > 0, the set (x0 − ε, x0 + ε)∩ S is infinite. Note that a limit point of a

set may or may not belongs to the set.

(b) x0 is a boundary point of S if every neighbourhood of x0 contains at least one point

in S and one not in S. The set of boundary points of S is the boundary of S, denoted

by ∂S. The closure of S, denoted by S, is S = S ∪ ∂S.

(c) x0 is an isolated point of S if x0 ∈ S and there is a neighbourhood of x0 that

contains no other point of S. From definition, it follows that an isolated point of a set

must belongs to that set.

(d) x0 is exterior to S if x0 is in the interior of Sc. The collection of such points is the

exterior of S.

(
(x0 − ε, x0 + ε)− {x0}

)
∩ S ̸= ϕ

If a set S admits a limit point, then the set S must be infinite which, in turn, implies that

a finite set has no limit point. It is natural to ask, whether an infinite set has a limit point?

The answer is not necessarily. Note that the set of all natural numbers N is an infinite set

possessing no limit point.

Bolzano-Weierstarss Theorem: A bounded infinite set has atleast one limit point.

Example: Consider the set S = {1, 1
2 ,

1
3 , · · · }. Then by B-W theorem, it has atleast one

limit point. It is very easy (not too) to verify that any real number x ̸= 0 is not a limit point

of S.

Let ε > 0 be arbitrary. Consider the neighbourhood (−ε, ε) of 0. Now, by Archimedian

property, there is N ∈ N such that 1
N < ε. Also −ε < 1

N . Therefore

−ε <
1

N
< ε =⇒ 1

N
∈ (−ε, ε) =⇒ 1

n
∈ (−ε, ε)∀n ≥ N

which shows that (−ε, ε) ∩ S is an infinite set. Hence 0 is a limit point of S.

Example : Let S = {sinnπ
2 : n ∈ N} = {−1, 0, 1}.

Consider the sequence {sinnπ
2 : n ∈ N} = {1, 0,−1, 0, 1, 0,−1, · · · }

For all n ∈ N, the intersection

xn ∈
(
x0 −

1

n
, x0 +

1

n

)
∩ S

is infinite.

0 ≤ |xn − x0| <
1

n
Derived set: The set of all limit points of a set S is called the derived set of S and is

denoted by S′.
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Closure of a set: Let S be a set. Then the closure of the set S is denotes by S and is

defined by

S = S ∪ S′.

Example : Let S = { 1
m + 1

n : m,n ∈ N}. Then find S′.

Solution: Let ε > 0 be arbitrary.

Case 1: Let m be fixed. Then there is N ∈ N such that

1

N
< ε.

Also,

1

m
−ε <

1

m
+

1

N
<

1

m
+ε =⇒ 1

m
+

1

N
∈
(

1

m
− ε,

1

m
+ ε

)
=⇒ 1

m
+
1

n
∈
(

1

m
− ε,

1

m
+ ε

)
∀n ≥ N

which implies that 1
m is a limit point of the set S.

Case 2: None of m,n is fixed. Then there exists M,N ∈ N such that

1

M
<

ε

2
and

1

N
<

ε

2
.

Then

−ε <
1

M
+

1

N
< ε =⇒ 1

M
+

1

N
∈ (−ε, ε) =⇒ 1

m
+

1

n
∈ (−ε, ε)∀m ≥ M,n ≥ N

which implies that 0 is a limit point of the set S.

Hence S′ = {0, 1, 1
2 ,

1
3 , · · · } = { 1

n : n ∈ N} ∪ {0}.
Exercise: Find the derived set of the set S = { 1

2m + 1
2n : m,n ∈ N}.

Exercise: Find the derived set of the set S = (0, 1) ∪ {2}.
NOTE: It is to be noted that every point of a set is either an isolated point or a limit

point of the set. It is also to be noted that a point x0 is a limit point of a set S if and only

if G ∩ (S \ {x0}) ̸= ϕ for each open set G containing x0. The set ϕ and R are both open and

closed. The term “term” is sometimes called “point of accumulation” or “cluster point”.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Set E Isolated Point(s)? Limit point(s)? Boundary Point(s)?

(−1, 1) None [−1, 1] {−1, 1}
[0, 1] None [0, 1] {0, 1}
N Every Point None N
R None Every Point of R None

Q None Every Point of R R
(−1, 1) ∪ [0, 1] None [−1, 1] {−1, 1}
(−1, 1) \ { 1

2} None [−1, 1] {−1, 1
2 , 1}

{1− 1
n : n ∈ N} {1} {1− 1

n : n ∈ N} ∪ {1}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Example: Let S = (−∞,−1] ∪ (1, 2) ∪ {3}. Then

(a) The set of limit points of S is (−∞,−1] ∪ [1, 2].

(b) ∂S = {−1, 1, 2, 3} and S = (−∞,−1] ∪ [1, 2] ∪ {3}.
(c) 3 is the only isolated point of S.

(d) The exterior of S is (−1, 1) ∪ (2, 3) ∪ (3,∞).

Example For n ≥ 1, let

In =

[
1

2n+ 1
,
1

2n

]
and S =

∞⋃
n=1

In.

Then

(a) The set of limit points of S is S ∪ {0}.
(b) ∂S = {x : x = 0 or x = 1/n (n ≥ 2)} and S = S ∪ {0}.
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(c) S has no isolated points.

(d) The exterior of S is

(−∞, 0) ∪

[ ∞⋃
n=1

(
1

2n+ 2
,

1

2n+ 1

)]
∪
(
1

2
,∞
)
.

Example: Let S be the set of rational numbers. Since every interval contains a rational

number, every real number is a limit point of S; thus, S = R. Since every interval also contains

an irrational number, every real number is a boundary point of S; thus ∂S = R. The interior

and exterior of S are both empty, and S has no isolated points. S is neither open nor closed.

Set E Closed? Open? E E◦
∂E

(−1, 1)

[0, 1]

N

R

ϕ

Q

(−1, 1) ∪ [0, 1]

(−1, 1) \ { 1
2}

E = {1− 1
n : n ∈ N}

NO

YES

YES

YES

YES

NO

NO

NO

NO

YES

NO

NO

YES

YES

NO

NO

YES

NO

[−1, 1]

[0, 1]

N

R

ϕ

R

[−1, 1]

[−1, 1]

E ∪ {1} E ∪ {1}

(−1, 1)

(0, 1)

ϕ

R

ϕ

ϕ

(−1, 1)

(−1, 1) \ { 1
2}

ϕ

{−1, 1}

{0, 1}

N

ϕ

ϕ

R

{−1, 1}

{−1, 1
2 , 1}

The next theorem says that S is closed if and only if S = S.

Theorem: A set S is closed if and only if no point of Sc is a limit point of S.

Proof. Suppose that S is closed and x0 ∈ Sc. Since Sc is open, there is a neighbourhood Vx0

of x0 such that x0 ∈ Vx0
⊂ Sc and therefore Vx0

∩ S = ϕ. Hence, x0 cannot be a limit point

of S.

For the converse, let no point of Sc be a limit point of S. We claim that S is closed. To

prove this we show that Sc is open. Let x0 ∈ Sc. Then x0 is not a limit point of S. Then x0

must have a neighbourhood, say Vx0
, such that Vx0

∩ S = ϕ and hence Vx0
⊂ Sc. This shows

that x0 is an interior point of Sc and therefore, Sc is open, and hence S is closed. □

The above Theorem can also be stated as follows:

Corollary: A set is closed if and only if it contains all its limit points S.

Example: The set of integers Z is closed. Note that

Zc =
⋃
n∈Z

(n, n+ 1).

Since (n, n+ 1) is open for each n ∈ Z, it follows that Zc is open and hence Z is a closed set.

In a similar way, it can be shown that

Nc = (−∞, 1) ∪

(⋃
n∈N

(n, n+ 1)

)
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which implies that N is closed.

Note: Above Theorem and Corollary are equivalent. However, we stated the theorem as

we did because students sometimes incorrectly conclude from the corollary that a closed set

must have limit points. The corollary does not say this. If S has no limit points, then the

set of limit points is empty and therefore contained in S. Hence, a set with no limit points is

closed according to the corollary, in agreement with Theorem. For example, any finite set is

closed.

Some important theorems:

Theorem: Let A and B be two sets of real numbers.

(1) If A ⊂ B then A′ ⊂ B′.

(2) (A ∪B)′ = A′ ∪B′.

(3) (A ∩B)′ ⊂ A′ ∩B′.

The equality in (3) does not hold, in general. For example, let A = (1, 2) and B = (2, 3).Then

A′ = [1, 2] and B′ = [2, 3] and therefore A′ ∩ B′ = {2}. Now, A ∩ B = ϕ. So (A ∩ B)′ = ϕ.

Hence the equality does not hold.

Theorem: Let A and B be two sets of real numbers.

(1) If A ⊂ B then A ⊂ B.

(2) A ∪B = A ∪B.

(3) A ∩B ⊂ A ∩B.

The equality in (3) does not hold, in general. For example, let A = (1, 2) and B = (2, 3).Then

A = [1, 2] and B = [2, 3] and therefore A ∩B = {2}. Now, A ∩B = ϕ. So A ∩B = ϕ. Hence

the equality does not hold.

Exercise: If S be any set of real numbers and G be an open subset of R, show that

G ∩ S ̸= ϕ =⇒ G ∩ S′ ̸= ϕ.

Exercise: Let F be a closed subset of R and let G be an open subset of R. Show that

F −G is a closed set and G− F is an open set.

Theorem: A set is open if and only if is a neighbourhood of each of its points.

Proof. Let G be an open set. Let x ∈ G. Then x is an interior point of G and so there is an

ε > 0 such that

x ∈ (x− ε, x+ ε) ⊂ G.

Hence G is a neighbourhood of x.

Conversely, let a set G is a neighbourhood of each of its points. Let x ∈ G. Then there

exists εx > 0 such that

x ∈ (x− εx, x+ εx) ⊂ G =⇒ {x} ⊂ (x− εx, x+ εx) ⊂ G

which implies that⋃
x∈G

{x} = G ⊂
⋃
x∈G

(x− εx, x+ εx) ⊂ G =⇒ G =
⋃
x∈G

(x− εx, x+ εx).

This shows that G is an union of open sets and hence is an open set. □

Interior of a set: Let S be a set of real numbers. Then the set of all interior points of S

is denoted by S◦ and is called interior of S.

Lets verify the following properties:

Theorem: Let A and B be two subsets of real numbers. Following statements hold good:

(a) If A ⊂ B, then A◦ ⊂ B◦.

(b) A◦ ∪B◦ ⊂ (A ∪B)◦.
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(c) A◦ ∩B◦ = (A ∩B)◦.

Proof. Left as an exercise. □

Note: It is to be noted that equality in (b) need not hold in general. For example, let

A = [0, 1], B = [1, 2]. Then A◦ = (0, 1), B◦ = (1, 2). Again A ∪ B = [0, 2] and hence

(A ∪B)◦ = (0, 2). It then follows that A◦ ∪B◦ ̸= (A ∪B)◦.

Theorem: The interior of a set is an open set.

Proof. If S◦ = ϕ, then there is nothing to proof.

So, let us suppose that S◦ ̸= ϕ. Let x ∈ S◦. Then x is an interior point of S and therefore

there exists an ε > 0 such that x ∈ (x− ε, x+ ε) ⊂ S. Since (x− ε, x+ ε) is an open set, it is a

neighbourhood of each of its points. Since (x−ε, x+ε) ⊂ S, it follows that (x−ε, x+ε) ⊂ S◦.

This shows that x is an interior point of S◦. Hence S◦ is an open set. □

Theorem: The interior of a set S is the largest open subset of S.

Proof. We have already shown that S◦ is an open set. Let G be an open subset of S. Claim:

G ⊂ S◦.

Let x ∈ G. Then x is an interior point of G. Then there is an ε > 0 such that x ∈
(x − ε, x + ε) ⊂ G. Since G ⊂ S, it follows that x ∈ (x − ε, x + ε) ⊂ S =⇒ x ∈ S◦. Hence

G ⊂ S◦. □

Theorem: The derived set S′ and S are closed sets.

Proof. To prove that S′ is a closed set, we must show that S′ contains all of its limit points.

Let x be a limit point of S′. Let ε > 0 be arbitrary. Then (x − ε, x + ε) ∩ S′ is an infinite

set. Let y ∈ (x − ε, x + ε) ∩ S′ such that y ̸= x. Since (x − ε, x + ε) is an open set, it is a

neighbourhood of y. So there is an ε1 > 0 such that (y− ε1, y+ ε1) ⊂ (x− ε, x+ ε). Since y is

a limit point of S, the set (y−ε1, y+ε1)∩S is infinite. It follows that the set (x−ε, x+ε)∩S

is an infinite set as well. This implies that x is a limit point of S, which means that x ∈ S′.

Since S′ contains all of its limit points, it is a closed set. □

A set S is closed iff S = S. It is to be noted that S ⊂ S. Also, if S is closed then

S′ ⊂ S =⇒ S ∪ S′ ⊂ S ∪ S =⇒ S ⊂ S

Now let S = S = S ∪ S′. This implies that S′ ⊂ S and hence S is closed.

A set S is open iff S = S◦.

Exercise: Describe the following sets as open, closed, or neither, and find S0, (Sc)0, and

(S0)c.

(a) S = (−1, 2) ∪ [3,∞).

(b) S = (−∞, 1) ∪ (2,∞).

(c) S = [−3,−2] ∪ [7, 8].

(d) S = Z.

Exercise:

(a) Show that the intersection of finitely many open sets is open.

(b) Give an example showing that the intersection of infinitely many open sets may fail

to be open.

Exercise:

(a) Show that the union of finitely many closed sets is closed.

(b) Give an example showing that the union of infinitely many closed sets may fail to be

closed.
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Exercise: Find the set of limit points of S, ∂S, S, the set of isolated points of S, and the

exterior of S.

(a) S = (−∞,−2) ∪ (2, 3) ∪ {4} ∪(7,∞).

(b) S = Z.
(c) S = ∪{(n, n+ 1) : n ∈ Z}.
(d) S = {x : x = 1/n, n = 1, 2, 3, . . . }.

Exercise:

(a) Prove: A limit point of a set S is either an interior point or a boundary point of S.

(b) Prove: An isolated point of S is a boundary point of Sc.

(c) A boundary point of a set S is either a limit point or an isolated point of S.

(d) A set S is closed if and only if S = S.

(e) Prove or disprove: A set has no limit points if and only if each of its points is isolated.

(f) Prove: If S is bounded above and β = supS, then β ∈ ∂S. State the analogous result

for a set bounded below.

(g) Prove: If S is closed and bounded, then inf S and supS are both in S.

(h) If a nonempty subset S of R is both open and closed, then S = R.

Exercise: Let S be an arbitrary set. Prove:

(a) ∂S is closed.

(b) S0 is open.

(c) The exterior of S is open.

(d) The limit points of S form a closed set.

(e)
(
S
)
= S.

Exercise: Give counterexamples to the following false statements.

(a) The isolated points of a set form a closed set.

(b) Every open set contains at least two points.

(c) If S1 and S2 are arbitrary sets, then ∂(S1 ∪ S2) = ∂S1 ∪ ∂S2.

(d) If S1 and S2 are arbitrary sets, then ∂(S1 ∩ S2) = ∂S1 ∩ ∂S2.

(e) The supremum of a bounded nonempty set is the greatest of its limit points.

(f) If S is any set, then ∂(∂S) = ∂S.

(g) If S is any set, then ∂S = ∂S.

(h) If S1 and S2 are arbitrary sets, then (S1 ∪ S2)
0 = S0

1 ∪ S0
2 .

Open Coverings: A collection G of open sets is an open covering of a set S if every

point in S is contained in a set G belonging to G; that is, if S ⊂ ∪{G : G ∈ G}. The open

cover G has a finite subcover if S is contained in the union of a finite number of sets inG.
In other words, a collection G of open sets is an open cover of S if S ⊂

⋃
G∈G

G. The open

cover G has a finite subcover if there exists G1, G2, · · · , Gn in G such that S ⊂
n⋃

i=1

Gi. To say

another way, G0 is a finite subcover if G0 ⊂ G, the set G0 is finite and S ⊂
⋃

G∈G0

G.

Example: The sets

S1 = [0, 1], S2 = {1, 2, . . . , n, . . . },

S3 =

{
1,

1

2
, . . . ,

1

n
, . . .

}
, and S4 = (0, 1)
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are covered by the families of open intervals

H1 =

{(
x− 1

N
, x+

1

N

) ∣∣∣∣ 0 < x < 1

}
, (N = positive integer),

H2 =

{(
n− 1

4
, n+

1

4

) ∣∣∣∣n = 1, 2, . . .

}
,

H3 =

{(
1

n+ 1
2

,
1

n− 1
2

) ∣∣∣∣n = 1, 2, . . .

}
,

and

H4 = {(0, ρ)| 0 < ρ < 1},

respectively.

There are many possible open covers for any given set of real numbers. For the interval

(0, 1), all the following collections are open covers

G1 =
{(

1
n , 1
)
: n ∈ N \ {1}

}
.

G2 =
{(

1
n , n

)
: n ∈ N \ {1}

}
.

G3 =
{(

1
2n , 1−

1
2n

)
: n ∈ N \ {1}

}
.

G4 =
{(

n
4 ,

n+2
4

)
: n ∈ Z

}
.

G5 =
{(

1
r , r
)
: r > 1

}
.

G6 = {(−r, 1− r) : 0 < r < 1}.
G7 = {(−0.2, 0.3), (0.1, 0.4), (0.3, 0.9), (0.7, 1.4)}.
G8 = {(0, 1)}.

It is important to verify that G2 ⊂ G5, but G2 is countably infinite subcover. The open cover

G4 contains a finite subcover, say, {(0, 0.5), (0.25, 0.75), (0.5, 1.0)}.
Compact set: A set S of real numbers is said to be compact if every open cover of S has

a finite subcover.

Using only definition, it is much easier to prove that a set is not compact that to prove it

compact. Note that a set is non compact, if one can find an open cover that does not have a

finite subcover. For example, the set N is not compact since the open cover {(n − 1, n + 1) :

n ∈ N} has no finite subcover. Not only that, it is to be noted that if any open set is removed

from this collection, then the new collection fails to cover N.
Example: The set R is not compact since the open cover {(−n, n) : n ∈ N} admits no

finite subcover. This follows from the fact that union of finite number of members of this

cover is a bounded set.

Example: (0, 1) is not compact: The open cover G1 of (0, 1) has no finite subcover.

If possible suppose that, this statement is not true. Then there is a finite collection, say,{(
1
ni
, 1
)
: 1 ≤ i ≤ k

}
of G1 which covers (0, 1). Let m = max{ni : 1 ≤ i ≤ k}. Then

k⋃
i=1

(
1

ni
, 1

)
=

(
1

m
, 1

)
.

It follows that no finite subset of G1 can cover (0, 1). Hence (0, 1) is not compact.

Let us now take an example of a compact set.

Example: Show that the set S =
{

1
n : n ∈ N

}
∪ {0} is compact.

Answer: Let G be an open cover of S. Then there is G0 ∈ G such that 0 ∈ G0. Since G0

is an open set, there is an r > 0 such that (−r, r) ⊂ G0We can choose a positive integer N

such that 1
n < r for all n > N . Since G is an open cover of S, there exists G1, G2, · · · , GN in

G such that 1
n ∈ Gn for all n = 1, 2, · · · , N . It then follows that {G0, G1, G2, · · · , GN} is a
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finite subcover of S. Since the open cover G was taken arbitrarily, it follows that every open

cover of S has a finite subcover. Hence the set S is compact.

Theorem: A closed subset of a compact set is compact.

Proof. Let S be a compact set and let E be a closed subset of S. Let G be an open cover of

E. Then the collection G
⋃
{Ec} is an open cover of S. Since S is compact, this collection

has a finite subcover G1 of S. Now, the collection G1 \ {Ec} is a finite subcover of G. Since G
was taken arbitrarily, it follows that every open cover of E has a finite subcover. Hence E is

compact. □

Heine-Borel Theorem: Every closed bounded set of real numbers is compact i.e., if G
is an open covering of a closed and bounded subset S of the real line, then S has an open

covering G̃ consisting of finitely many open sets belonging to G.

Proof. We first show that every closed bounded interval [a, b] is compact. Let G be an open

cover of [a, b]. Let

E = {x ∈ [a, b] : [a, x] can be covered by a finite number of elements of G}.

It is clear that E is non-empty, since a ∈ E. Also E is bounded above by b. Hence by

completeness property, supE exists and let us call it z. We aim to show that z ∈ E and z = b.

Since G is an open cover of [a, b], there is Gz ∈ G such that z ∈ Gz. Since Gz is an open

set, there is an ε > 0 such that z ∈ (z − ε, z + ε) ⊂ Gz. Again, since z = supE, there is an

element c ∈ E such that z − ε < c ≤ z < z + ε. Since c ∈ E, the interval [a, c] can be covered

by a finite number of elements of G. Now [a, z] = [a, c] ∪ [c, z] and [c, z] ⊂ (z − ε, z + ε) ⊂ Gz.

Hence [a, z] can be covered by a finite number of elements of G. Consequently, z ∈ E.

To show that z = b, we assume that z < b. Since z < b and Gz is an open set containing

z, we choose a point d such that z < d < z + ε < b. Now, [a, d] = [a, z] ∪ [z, d]. Note that

[a, z] can be covered by a finite number of elements of G. Also [z, d] ⊂ (z − ε, z + ε) ⊂ Gz.

Hence [a, d] can be covered by a finite number of elements of G which implies that d ∈ E-a

contradiction. Therefore we must have z = b and consequently, [a, b] can be covered by a finite

number of elements of G and hence [a, b] is compact.

Now let S be a closed bounded subset of real numbers. So there exists a real number M > 0

such that K ⊂ [−M,M ]. By the first part, [−M,M ] is compact. Since S is a closed subset of

a compact set [−M,M ], it follows that S is compact. Hence the proof is complete. □

Henceforth, we will say that a closed and bounded set is compact. The Heine–Borel

theorem says that any open covering of a compact set S contains a finite collection that also

covers S. This theorem and its converse show that we could just as well define a set S of

reals to be compact if it has the Heine–Borel property; that is, if every open covering of S

contains a finite subcovering. The same is true of Rn. This definition generalizes to more

abstract spaces (called topological spaces) for which the concept of boundedness need not

be defined.

The Bolzano–Weierstrass Theorem: As an application of the Heine–Borel theorem,

we prove the following theorem of Bolzano and Weierstrass.

Theorem: Every bounded infinite set of real numbers has at least one limit point.

Proof. We will show that a bounded nonempty set without a limit point can contain only a

finite number of points. If S has no limit points, then S is closed and every point x of S has

an open neighborhood Nx that contains no point of S other than x. The collection

H = {Nx : x ∈ S}
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is an open covering for S. Since S is also bounded, Heine-Borel theorem implies that S can

be covered by a finite collection of sets from H, say Nx1
, . . . , Nxn

. Since these sets contain

only x1, . . . , xn from S, it follows that S = {x1, . . . , xn}. □

Exercise: Let {xn : n ∈ N} be a sequence of real numbers such that xn → x0. Prove that

{xn : n = 0, 1, 2, · · · } is compact.

Idea of countable sets, uncountable sets and uncountability of R: Are there more

rational numbers than there are integers? How about real numbers; are there more of them

than there are of rationals? Are there fewer numbers in the interval (0, 1) than in (0, 2) or

than in R itself? Mathematicians would say that the answers to these questions are no, yes,

and no, respectively, but what do these answers-and the questions-mean? Read on, and leave

your intuition behind; it won’t help much here.

Sets that we can match up with {1, 2, · · · , n} or with N = {1, 2, · · · } are especially important

for both theoretical and practical reasons. The ones that match up with {1, 2, · · · , n} are the

finite sets of size n. Sets that are the same size as N are called countably infinite (or

enumerable). Thus a set S is countably infinite if and only if there exists a one-to-one

correspondence N onto S i.e., if there is a bijection between the sets N and S. A set is

countable if it is finite or is countably infinite. One is able to count or list such a nonempty

set by matching it with {1, 2, · · · , n} for some n ∈ N, or with the whole set N. In the infinite

case, the list will never end. As one would expect, a set is uncountable if it is not countable.

Example: (a) The set S of all even positive integers are countable, since the mapping

f(n) = 2n for all n ∈ N is a bijection from N onto S

(b) The set P = {0, 1, 2, · · · } is countably infinite because f(n) = n−1 defines a one-to-one

function f mapping N onto P. Its inverse f is a one-to-one mapping of P onto N; note that

f−1(n) = n+ 1 for n ∈ N. Even though N is a proper subset of P, by our definition N is the

same size as P. This may be surprising, since a similar situation does not occur for finite sets.

Oh well, P has only one element that is not in N.

1

1

2

2

3

3

4

4

5

5

· · ·

· · ·

· · ·

· · ·0

N

P
� / / / 	

(c) The set Z of all integers is also countably infinite. The Figure given below shows a

one-to-one function f from Z onto N. We have found it convenient to bend the picture of Z.
This function can be given by a formula, if desired:

f(n) =

{
2n+ 1 for n ≥ 0

−2n for n < 0

Even though Z looks about twice as big as N, these sets are of the same size. Beware! For

infinite sets, your intuition may be unreliable. Or, to take a more positive approach, you may

need to refine your intuition when dealing with infinite sets.
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There are sets that are uncountable, i.e., not the same size as N. Let us take the following

example:

Example: The interval [0, 1) is uncountable. If it were countable, there would exist a one-

to-one function f mapping N onto [0, 1). We will show that this is impossible. Each number in

[0, 1) has a decimal expansion 0.dld2d3 · · · , where each dj is a digit in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.
In particular, each number f(k) has the form 0.d1kd2kd3k · · · ; here dnk represents the nth

digit in f(k).

f(1) = 0.d11d21d31d41 · · ·
f(2) = 0.d12d22d32d42 · · ·
f(3) = 0.d13d23d33d43 · · ·
f(4) = 0.d14d24d34d44 · · ·

Consider the Figure shown above and look at the indicated diagonal digits d11, d22, d33, · · · .
We now define the sequence d∗, whose nth term d∗n is constructed as follows: if dnn ̸= 1, let

d∗n = 1, and if dnn = 1, let d∗n = 2 i.e.,

d∗n =

{
1 if dnn ̸= 1

2 if dnn = 1

The point is that d∗n ̸= dnn for all n ∈ N. Now 0.d∗1d
∗
2d

∗
3 · · · is a decimal expansion for a

number a in [0, 1) that is different from f(n) in the nth digit for each n ∈ N. Thus a cannot

be one of the numbers f(n); i.e., a is not in Im(f), so f does not map N onto [0, 1). Thus

[0, 1) is uncountable.

The proof can be modified to prove that R and (0, 1) are uncountable; in fact, all intervals

[a, b], [a, b), (a, b], and (a, b) are uncountable for a < b. In view of Exercise 9, another way to

show that these sets are uncountable is to show that they are in one-to-one correspondence

with each other. In fact, they are also in one-to-one correspondence with unbounded intervals.

Showing the existence of such one-to-one correspondences can be challenging. We provide a

couple of the trickier arguments in the next example and ask for some easier ones in Exercise

3.

Example: (a) It is easy to show that (0, 1) and (0, 2) are the same size; the function f

defined by f(x) = 2x gives a one-to-one correspondence from (0, 1) onto (0, 2). More generally,

the linear function f(x) = ax+ b with a > 0 maps (0, 1) one-to-one onto (b, a+ b).

(b) We can show that [0, 1) and (0, 1) have the same size. No simple formula provides us

with a one-to-one mapping between these sets. The trick is to isolate some infinite sequence

in (0, 1), say 1
2 ,

1
3 ,

1
4 , · · · and then map this sequence onto 0, 1

2 ,
1
3 ,

1
4 , · · · , while leaving the

complement fixed. That is, let

C = (0, 1) \
{
1

n
: n = 1, 2, 3, · · ·

}
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and define

f(x) =


0 if x = 1

2
1

n−1 if x = 1
n for some integer n ≥ 3

x if x ∈ C

13.3 r Infinite Sets 531

and define

0 if x = -

f(x) = if x = 1/n for some integer n > 3.

x if xE C

See Figure 6. C

1,1,1CUKnowing that a set is countable can be important. It would be truly annoying
) =C U 2 X3 '4' if we had to construct a new correspondence every time we had a new set that we

4, 1 4, wanted to show was countable. Fortunately, two basic facts often make the task
much easier.

[0,1) cu{0 '3

f: (0, 1) [0, 1) Theorem

Figure 6 A (a) Subsets of countable sets are countable.
(b) The union of countably many countable sets is countable.

Proof

(a) It is enough to show that subsets of P are countable. Consider a subset A of
P. Clearly, A is countable if A is finite. Suppose that A is infinite. We will use
the Well-Ordering Principle on page 131. Define f(1) to be the least element
in A. Then define f(2) to be the least element in A \ {f(1)}, f(3) to be the
least element in A \ {f (1), f (2)}, etc. Continue this process so that f (n + 1)
is the least element in the nonempty set A \ {f (k) : 1 < k < n} for each n E P.
It is easy to verify that this recursive definition provides a one-to-one function
f mapping P onto A [Exercise 10], so A is countable.

(b) The statement in part (b) means that, if I is a countable set and if {Ai : i E I} is
a family of countable sets, then the union U Ai is countable. We may assume

iEl

that each Ai is nonempty and that U Ai is infinite, and we may assume that
iEl

I = P or that I has the form (1, 2, . .. , n}. If I = (1, 2, . . ., n}, we can define
Ai = An for i > n and obtain a family {Ai : i E 1P} with the same union.
Thus we may assume that I = P. Each set Ai is finite or countably infinite. By
repeating elements if Ai is finite, we can list each Ai as follows:

Ai = {ali, a 2 i a3 i, a4i, * * }.

The elements in UAi can be listed in an array as in Figure 7. The arrows in
icI

the figure suggest a single listing for U Ai:
iel

all, a12, a21, a31, a22, a13, al4, a23, a32, a4l, (*)

Some elements may be repeated, but the list includes infinitely many distinct
elements, since U Ai is infinite. Now a one-to-one mapping f of 1P onto

iEI

U Ai is obtained as follows: f (1) = alI, f (2) is the next element listed in (*)
iEI
different from f (1), f (3) is the next element listed in (*) different from f (1)
and f (2), etc. o

Theorem: (a) An infinite set contains an enumerable set.

(b) Subsets of countable sets are countable.

(c) The union of countably many countable sets is countable.

Proof. (a) Let A be an infinite set. Let us define a mapping f : N → A by

f(1) = an element from A, say x1

f(2) = an element from A \ {x1}, say x2

f(3) = an element from A \ {x1, x2}, say x3

· · ·
f(n) = an element from A \ {x1, x2, · · · , xn−1}, say xn

· · · .

It is very important to note that f is an one-to-one mapping of N into A. Let us take

B = f(N) = {x1, x2, · · · , xn, · · · }. Then f : N → B is a bijection and therefore the subset B

of A is countable.

(b) It is enough to show that subsets of N are countable. Consider a subset A of N. Clearly,
A is countable if A is finite. Suppose that A is infinite. Define f(1) to be the least element

in A. Then define f(2) to be the least element in A \ {f(1)}, f(3) to be the least element

in A \ {f(1), f(2)}, etc. Continue this process so that f(n + 1) is the least element in the

non-empty set A \ {f(k) : 1 ≤ k ≤ n} for each n ∈ N. It is easy to verify that this recursive

definition provides a one-to-one function f mapping N onto A, so A is countable.

(c) The statement in part (c) means that, if I is a countable set and if {Ai : i ∈ I} is a

family of countable sets, then the union ∪Ai is countable. We may assume that each Ai is

non-empty and that ∪Ai is infinite, and we may assume that I = N or that I has the form

{1, 2, · · · , n}. If I = {1, 2, · · · , n}, we can define Ai = An for i > n and obtain a family

{Ai : i ∈ N} with the same union. Thus we may assume that I = N. Each set Ai is finite or

countably infinite. By repeating elements if Ai is finite, we can list each Ai as follows:

Ai = {a1i, a2i, a3i, a4i, · · · }.

The elements in ∪Ai can be listed in an array as in Figure given below. The arrows in the

figure suggest a single listing for ∪Ai:

a11, a12, a21, a31, a22, a13, a14, a23, a32, a41, · · · . (∗)

Some elements may be repeated, but the list includes infinitely many distinct elements, since

∪Ai is infinite. Now a one-to-one mapping f of N onto ∪Ai is obtained as follows: f(1) =

a11, f(2) is the next element listed in (∗) different from f(1), f(3) is the next element listed

in (∗) different from f(1) and f(2), etc.
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The argument in Example 1(c), which shows that Q is countable, is similar to the
proof of part (b) of the theorem. In fact, we can use the theorem to give another
proof that Q is countable. For each n in IP, let

A=- m c E
In

Thus An consists of all integer multiples of l/n. Each An is clearly in one-to-one
correspondence with Z [map m to m/n], so each A, is countable. By part (b) of the
theorem, the union

U An Q
n cP

is also countable. .

(a) If E is a finite alphabet, the set E* of all words using letters from E is countably
infinite. Note that E is nonempty by definition. We already know that X' is
infinite. Recall that

00

E*= U i'k

k=O

where each Ek is finite. Thus V* is a countable union of countable sets, and
hence X* itself is countable by part (b) of the theorem.

(b) It follows from part (a) that the set of all computer programs that can be typed
on all the keyboards in the world [a finite set] is countable. Since each program
can produce only a countable number of outputs, part (b) of the theorem says
that the total number of outputs that can be produced by programs is countable.
Hence, even if we allow irrational outputs such as v17 and 7r/4, there must be
real numbers that cannot be computed by any program.

In fact, there must be uncountably many unobtainable outputs in part (b).
The reason is that if S is a countable subset of an uncountable set U, then U \ S
must be uncountable, since otherwise U would be the union of two countable
sets, and part (b) of the theorem would apply.

(c) Imagine, if you can, a countably infinite alphabet E, and let X* consist of
all words using letters of E, i.e., all finite strings of letters from E. For each
k E P, the set Ek of all words of length k is in one-to-one correspondence with
the product set Ek = E x E x ... x E (k times). In fact, the correspondence
maps each word ala2 ... ak to the k-tuple (al, a2, . .. , ak) . So each set Ek is

countable by Exercise 15. The 1-element set -° = {A} is countable too. Hence
00

*= U Ek is countable by part (b) of the theorem. U

k=O

Consider a graph with sets of vertices and edges V and E. Even if V or E is infinite,
each path has finite length by definition. Let P be the set of all paths of the graph.

(a) If E is nonempty, then P is infinite. For if e is any edge, then e, e e, e e e, etc.,
all describe paths in the graph.

Figure 7 0
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all a2 1  $a 31  a4 1 l .

a 1 2  a 2 2  a3 2  a4 2

a1 3  a 2 3  a3 3  a4 3

a1 4 a2 4 a3 4 a4 4 .

A

-37'1 3B I

A

Thus we get a one-to-one mapping from N onto ∪Ai which shows that ∪Ai is countable. □

Example: We use the above theorem to show that the set Q of all rational numbers is

countable. To show this we first show that the set Q+ of all positive rational numbers is

countable. Now for each n in N, let

A1 =
{

m
1 : m ∈ N

}
=
{

1
1 ,

2
1 ,

3
1 , · · · ,

n
1

}
.

A2 =
{

m
2 : m ∈ N

}
=
{

1
2 ,

2
2 ,

3
2 , · · · ,

n
2

}
.

A3 =
{

m
3 : m ∈ N

}
=
{

1
3 ,

2
3 ,

3
3 , · · · ,

n
3

}
.

· · · .
Ak =

{
m
k : m ∈ N

}
=
{

1
k ,

2
k ,

3
k , · · · ,

n
k

}
.

· · · .

Since An is countable, by the above theorem, it follows that

∞⋃
n=1

An is countable i.e., the set

of all positive rational numbers is countable.

Now it is obvious that the set Q− of all negative rational numbers is countable. It is clear

from the fact that the mapping f : Q+ → Q− defined by f(x) = −x for all x ∈ Q is a bijection.

Finally it follows that

Q = Q+ ∪Q− ∪ {0}

is also countable.

Example: The set N× N is counatble.

Solution: Let us define a mapping f : N×N → N by f(m,n) = 2m3n for all (m,n) ∈ N×N.
It is clear that f is injective, since

f(m,n) = f(p, q) =⇒ 2m3n = 2p3q

=⇒ 2m−p = 3q−n

=⇒ m− p = 0, q − n = 0

=⇒ m = p, n = q

=⇒ (m,n) = (p, q).

Note that f(N×N) is a proper subset of N since the elements 5, 7, 10, · · · are not in f(N×N).
Hence f : N × N → f(N × N) is a bijective mapping. Since subset of a countable set is

countable, the set f(N× N) is countable. Hence N× N is countable.

Exercise: Give one-to-one correspondences between the following pairs of sets:

(a) (0, 1) and (−1, 1) (b) [0, 1) and (0, 1]

(c) [0, 1] and [−5, 8] (d) (0, 1) and (1,∞)

(e) (0, 1) and (0,∞) (f) R and (0,∞).

Exercise: Let E = {n ∈ N : n is even}. Show that E and N\E are countable by exhibiting

one-to-one correspondences f : N → E and g : N → N \ E.
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Exercise: Show that if there is a one-to-one correspondence of a set S onto some countable

set, then S itself is countable.

Exercise: Prove that if f maps S onto T and S is countable, then T is countable.
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