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Binary Composition: A binary operation or law of composition on a set G is a function
o: G x G — G that assigns to each pair (a,b) € G x G a unique element aob in G, called the

composition of a and b.

Group: A group (G,o
satisfies the following a

(1) For any a,t , the composition aob € G (Closure Prope

+ instead
of n € Z is written as —n instead of n~'. Notice that the set of integers under addition have

the additional property that m +n = n + m and therefore form an abelian group.

Remark. Most of the time we will write ab instead of aob; however, if the group already has
a natural operation such as addition in the integers, we will use that operation. That is, if we
are adding two integers, we still write m +n, —n for the inverse, and 0 for the identity as
usual. We also write m —n instead of m+ (—n). It is often convenient to describe a group in

terms of an addition or multiplication table. Such a table is called a Cayley table.

Example 2. The integers mod n form a group under addition modulo n. Consider Zs ,
consisting of the equivalence classes of the integers [0], [1], [2], [3], and [4]. We define the group
operation on Zs by modular addition. We write the binary operation on the group additively;
that is, we write [m] + [n]. The element [0] is the identity of the group and each element in

Zs has an inverse. For instance, [2] + [3] = [3] + [2] = [0]. Fligure given below is a Cayley
1
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table for Zs . It can also be shown that Z,, = {[0],[1], - ,[n— 1]} is a group under the binary
operation of addition mod n.
+ [ o0 0 ) 4]
7 | 0] 1 [3] [4]
Al | [y 2l Bl [4] [0]
2 B[O 1
B | B @ o
[4] | [

et modular

lement [1]

|- [k] = [k]-[1] = [K] for any [k] € Zn; how
since [0] - [k] = [k] - [0] = [0] for every [K] " ven if we
e still may not have a group. For instance, let |

has nd ipli erse since

the subset

The inversec

The product of two invertible matrices is again invertible. Matriz multiplication is associative,
satisfying the other group axiom. For matrices it is not true in general that AB = BA; hence,

GL5(R) is another example of a nonabelian group.

1 1 . .
Example 5. Let 1 = 0 I = 0 ,J = 0 ‘ and K = ! 0. where i2 = —1.
0 1 -1 0 i 0 0 —i

Then the relations I2 = J? = K? = -1, IJ=K,JK =1, KI = J,J] = -K,KJ = —1I, and
IK = —J hold. The set Qg = {+1,+I,+J,+K} is a group called the quaternion group.

Notice that Qg is non-commutative.

Example 6. Let C* be the set of all non-zero compler numbers. Under the operation of

*
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number, then
4, a—0bi

a2+ b2
is the inverse of z. It is easy to see that the remaining group axioms hold.

A group has finite order, if it contains a finite number of elements; otherwise, the group
is said to be of infinite order. The order of a finite group is the number of elements that it
contains. If G is a group containing n elements, we write |G| = n or o(G) = n. The group
Zs is a finite group of order 5; the integers Z form an infinite group under addition, and we

sometimes write |Z| = oc.

Example 7. Let S = {e,a,b,c} and let x be the binary composition defined on S by e x a =

axe=a,exb=bxe=bexc=ckxe=c,exe=axa=bxb=cxc=e,axb=bxa=

aob=a+b+1=b+a+1=boa

Example 9. Let X be a no-empty set and let P(X) denote the set of subsets of X. Ezamine
if P(X) is a group under the composition defined by

(i) AxB=ANDB, A,B e P(X).

(il) Ao B=AUB, A,B € P(X).

(ili) AeB=AAB=(A-B)U(B-A), A,Be€ P(X).

Solution: (i) It is easy to verify that closure, associative property is satisfied in P(X)
under . It is also easy to verify that X is the identity element of P(X) with respect to *.
However, it is clear that for ¢ € P(X), there is no element A in P(X) such that px A =X,
the identity element. Hence ¢ does not have any inverse with respect to x and so (P(X), ) is
not a group.

(i) It is easy to verify that closure, associative property is satisfied in P(X) under o. It

o ol 11 -« the identity el ' PUX) wil] o I L
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clear that for X € P(X), there is no element A in P(X) such that X o A = ¢, the identity
element. Hence X does not have any inverse with respect to o and so (P(X),0) is not a group.

(11i) It easy to verify that closure and associative properties hold good in P(X) under e.
Note that ¢ is the identity element in P(X) with respect to e. Also for any A € P(X),
it is clear that A e A = ¢ and hence A is the inverse of itself. Also for any two elements
A,B € P(X), we have Ae B= Be A. Hence (P(X),e) is a commutative group.

Example 10. Prove that the set H = { l “

5 ca,b€R,a®+ b = 1} forms a group with
b a

respect to matrix multiplication.

1
Solution. [t is obvious that H # ¢, as [O (1)] €H.

Let A= [a b] and
-b a

bl | ¢ d| | ac—bd
—b a||-d c¢| |—(ad+bc)

Note that

1.

associative
b

a

€ H.

the composition “composition of mappings”. It can be shown easily that G is not abelian
(verify!). The group G is known as symmetric group of degree 3 and is denoted by Ss.
Note that order of the group Ss is 6.

As you know that (1 2 3) is called a 3-cycle. A 2-cycle is called a transposition. FEvery
permutation can be written as a composition of transpositions. For example, (1 2 3) = (1 3) o
(12).

A permutation is called even if it can be written as a composition of even number of trans-
positions otherwise it is called an odd permutation. Therefore (1 3 2) is an even permutation.
The identity permutation is an even permutation. It is to be noted that S3 contains 3 even per-
mutation and 3 odd permutations. The set Az of all even permutations, i.e., Az = {fo, f1, f2},
forms a group with respect to the same composition which is defined in Ss. The group As is

o(Ss3)
2

called alternating group. Note that 0o(As) =3 = . It is also to be noted that Az is an

abelian group
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In a similar way, it can be shown that S,,, the set of all permutations on a set of n symbols
{1,2,--- ,n}, forms a group under the composition “composition of mappings” and the set A,
of all even permutations forms a group under the same composition. It is also to be noted that
0o(Sy) = n! and o(A,) = %

Basic Properties of Groups:

Theorem 12. The identity element in a group G is unique; that is, there exists only one

element e € G such that eg = ge = g for all g € G.

Proof. Suppose that e and e’ are both identities in G. Then eg = ge = g and €'g = g/ = g
for all g € G. We need to show that e = ¢’ . If we think of e as the identity and ¢’ an element
of G, then ee’ = €’; but if we consider €’ is an identity and e an element of G, then ee’ = e.

Combining these two equations, we h (I
Theorem 13. If g is an ment in a group G, then the inve of g, denoted by g~ ", is
unique.
Proof. Inverses i gina
group G, then

O

Proof. Let a,be G

Similarly,

by a, we have

It makes sense to write equations with group elements and group operations. If a and b are
two elements in a group G, does there exist an element € G such that ax = b7 If such an x

does exist, is it unique? The following proposition answers both of these questions positively.

Theorem 16. If G is a group and a,b,c € G, then ba = ca implies b = ¢ and ab = ac implies
b=c.

This theorem tells us that the right and left cancellation laws are true in groups. We leave

the proof as an exercise.

Theorem 17. Let G be a group and a and b be any two elements in G. Then the equations

axr ="b and ra =b have unique solutions in G
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Proof. Suppose that az = b. We must show that such an x exists. We can multiply both sides

Loz = a=1b.

ofax=bbya'tofindx=exr=0a"
To show uniqueness, suppose that z; and zo are both solutions of ax = b; then ax; =b =
axrs. So x1 = a tar; = a 'axs = z5. The proof for the existence and uniqueness of the

solution of xa = b is similar. O

We can use exponential notation for groups just as we do in ordinary algebra. If G is a

group and g € G, then we define ¢° = e. For n € N, we define

and

Theorem 18. In a group 1sual ent: : that is, for all g, h

n general,

operation

prove that

aox for
allx € G group with
respect to th
Problem 3. ] e 1S prot abelian.
enab € G

and therefore, a = a~,b="b"' and ab = (ab)~!. Hence
ab=(ab)"' =b"ta"! = ba.
This is true for all a,b € G and hence G is abelian.
Problem 4. If in a group G, a®> = e for all a € G, then prove that G is abelian.
Solution. Leta € G. So a™! € G. Then by hypothesis, a®> = e and so
ala® =a"te or, a = al.

This is true for all a € G. Hence by the above result G is an abelian group.

Problem 5. Prove that a group (G, o) is abelian if and only if (aob)™ =a~Lob™! for all
a,be G
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Solution. Let us first assume that G is abelian. Then
(aob) ™' =(boa) ' =a —1ob*

for all a,b € G.
Conversely, let (aob)™ =a=tob™! for all a,b € G. We claim that G is abelian.
Let a,b € G. Then (aob)~' =a~'ob™ . Taking inverse of both side, we get

((aob)™) ' =(atob )™
or, ab = (b_l)_1 (a_l)_1 = ba.
This is true for all a,b € G. Hence G is abelian.

Definition 19. Order of an element: Let G be a group and let a € G. Then we say that
a has order n or a is of order n if n is the smallest positive integer such that a™ = e, e being
the identity element of G. We wri

(i) if o(a) =

(iii) if o(a) = n; th elements e,a,a’, -+ ,a

2 n—1

Proof. (i)
such that a™ = e, where e is the identity element of G. Now,

(a—l)n =g "= (an)—l —e

which implies that o(a™!) < n. If possible suppose that o(a™!) = k < n. Then (a7 1)k = ¢

which implies that a=k = e. This implies that a* = e which is a contradiction to the
hypothesis. hence we must have o(a=1) = n = o(a).

Case 2: Let o(a) be infinite. We claim that o(a~!) is also infinite. If possible suppose
that o(a~!) = n. Then as before, we get a™ = e which contradicts our hypothesis. Hence our
claim is established.

(ii) Let o(a) = n and a™ = e. Then n is the smallest positive integer such that a™ = e, the
identity element of G. Then we must have n < m and so by division algorithm, there exists
q,r € 7Z such that

m=nqg-+r
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with 0 < r < n. We claim that » = 0. If not, then 0 < r < n. Then
e=a"=a"""" = (a")%" =ea” =a"

which is contradiction to the fact that o(a) = n. Hence we must have r = 0 which yield that
m = nq. Hence n divides m.

n—1

(iii) Let o(a) = n. If possible, let the elements e, a,a?, -+ ,a"~! are not all distinct. So we

have a” = a® for some r, s with 0 < r < s <n — 1. This implies that

and 0 < s — r < n which is a contradiction to the hypothesis. Hence the result follows. O

Example 27. Let G be a group. Let a € G be such that a®> = e. Then we have either (i)

a=ce or (ii) o(a) = 2.

Example 28. Let G be_a e ele ] e order.

of Example 28 may not hold in general. In : 9(iii), we
entity element is of order 2, but the group is of in order.

being the
it follows

= du and

W. Hence the theorem follows. O

Example 30. If b is an element of a group G and o(b) = 20, find the order of the element
(i) b6 (i) b® (iii) b'5.

(i) Here o(b%) = % = 10.

(i), (i11) are left as an exercise.

Example 31. Find the number of elements of order 10 in (Zszo,+).
Note that o(1) = 30 in (Z3o,+). Let o(k) = 10. Then by the above theorem,
— - 30
k)=o0(kl) = ————.
olk) = o(k1) gcd(k, 30)
So by hypothesis,
30
gﬁﬂ(b)?ﬂ)
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which implies that
k=3,9,21,27.

Hence number of elements of order 10 in (Z3o,+) is 4 and are given by 3,9,21,27.
Problem 6. Find the number of elements of order 5 in the group (i) (Zso,+) (i) (Zao,+).

Example 32. Let G be a group and let a,b € G. If o(a) = 3 and if aba~' = b2, find o(b) if

b#e,
Let o(a) = 3 and let aba™* = b?>. Then

(aba™1)(aba™!) = b* = ab*a™! = b* = a(aba™ a7 = b = @*ba? = b

Now,

the same.

he same as t

Proof. (i) Let e be i oup (G, o) and let eg be the same
Then for any h €

As H C G, the element h is also in G and therefore
eqoh=hoeg = h.
Then
egoh=eqoh— eg =eqg

by right cancellation law.
(ii) Let @ € H. Let b and ¢ be the inverse of a in (G, o) and (H, o) respectively. Then

aob=boa=¢eqg
aoc=coa=eg

But by (i), e = ey and so aob = a o c. Hence by cancellation law, we get b = ¢ 1
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Theorem 37. Let (G,0) be a group and let H be a non-empty subset of G. Then H is a
subgroup of (G, o) if and only if (i) a,b € H=>aobec H and (ii)a € H = a"' € H.

Proof. Let us first suppose that (H, o) is a subgroup of (G, o). Then by definition (H, o) itself
form a group and the conditions (i) and (ii) are obviously satisfied.

Conversely, let the conditions hold good. Condition (i) guarantees that H is closed under
o. Since associative property is a hereditary property and H C G, it is clearly satisfied in H
with respect to o.

Now, let a € H. Then by (ii), a=! € H and therefore by (i), we have aa~! = e € H. This
shows that (H, o) is itself a group and hence by definition it is a subgroup of (G, o). d

Theorem 38. Let (G,0) be a group and let H be a non-empty subset of G. Then H is a
subgroup of (G, o) if and only if a,b € H = aob~! € H.

refore, the

5 it follows

L' =g =571 € H. Also H satisfies closure and associative properties. Hence H

and hence a~

is a subgroup of G. O

Problem 7. Let H = {x € C : 222! = 1}. Prove that H is a subgroup of C\ {0} under

multiplication.

Solution. It is to be observed that o(H) = 2021 and that the group (C\ {0},-) is abelian.
Now let a,b € H. Then a?°?' =1 and b*°?' =1 and therefore

(ab)2021 — a202162021 -1

hich imulies that ah ¢ H. Hence by T} 9. we have H i l ({0}
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Note. Theorem 39 need not be true if H is assumed to be an infinite set. For example, let
G = 7 be the group with respect to addition. Let H = N. It is to be noted that H is closed
under addition but is not a subgroup of G.

Example 40. Let G be a group. Let us consider the set
H={xeG:xg9=gz foralge G}

Then clearly, H is non-empty as e € G where e is the identity element of G. We claim that
H is a subgroup of G.
Let a,b € H. Then ag = ga and bg = gb holds for all g € G.
Now,
bg=gb=b"1(bg)b" L =blghbl = gb 1 =b"lyg
for all g € G. Therefore, for all g € G

ab"")g=a(b"'g)

-1
)
1

= a(gb
= (ag)b™
= g(ab™")

called the ¢ t 0 G land is denoted by Z(Q).
For exa L if we take GI=Vy, the Kilew group, then

which implies that xy~' € H. Hence H is a subgroup of G.

The subgroup H is called the centraliser of the element a and is denoted as C(a). It is
also obuvious that Z(G) C C(a) and Z(G) is a subgroup of C(a).

Theorem 42. Let H and K be two subgroups of a group G. Then HN K is a subgroup of G.

Proof. Tt is clear that e € H N K, e being the identity element of G and hence H N K # ¢.
Let a,b € HN K. Then

a,be HNK = a,be H & a,be K
—ab leH&ab ' eK
—ab e HNK

which implies that H 0 K is a subgroup of G [l
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Note. The above theorem need not hold if you replace N by U i.e., the union of two subgroups
of a group need not be a subgroup of the group. For example, let us consider the Klein’s 4-group
Vi (See Example 7). Let us take H = {e,a} and K = {e,b}. Then H and K are two subgroups
of Va. But HUK = {e,a,b} is not a subgroup of Vy, since a,b € HUK butc=ab¢ HUK.

However we have the following theorem:

Theorem 43. Let G be a group and let H, K be two subgroups of G. Then H U K is a
subgroup of G if and only if either H C K or K C H.

Proof. Let us first suppose that H U K be a subgroup of G. We have to prove that either
H C K or K C H. Suppose that our claim is not true. Then H ¢ K and K ¢ H. So there
is an element a € K such that a ¢ H and another element b € H but b ¢ K. Therefore,
a,b € HU K and since H U K_i ve have ab € H U K. Themub € H or

o € K and ab € K implies that a tab=0b € .
s to H nor to K and hence ab ¢ H U tion. This

e that either H C K or K C H. Then either = K or
K is a subgroup of G. (]

=k <n.

Now by hypothesis, we have

zazr~ ' =a = za = az.

This is true for all x € G. Hence a € Z(G).
Problem 9. Let a and b be two elements in a group G. Show that o(ab) = o(ba).

Solution. It is to be noted from the above problem that o(a) = o(xax~"') for all x € G. It is
also to be noted that

ab="b"1(ba)b=b"1(ba)(b~ 1)L
Hence o(ab) = o(ba).

Problem 10. Let G be an abelian group. Prove that the subset H ={g € G:g=g"'} isa

subgroup of G
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Solution. First note that e € H as e = e~ where e is the identity element of G. Therefore
H#¢. Letx,yc H. Thenx =a ' andy =y~ '. Thenay ' =2 ly=yar~! = (zy~H)!
and hence xy~' € H. This shows that H is a subgroup of G.

Problem 11. Let (G,0) be a group and (H,o) be a subgroup of (G,0). Let x,y € G. Define
a relation p on G by “rpy if and only if toy~! € H”. Prove that p is an equivalence relation

on G.

Solution. Reflexive: Since zox~! =e € H for all x € G, it follows that xpx holds for all
x € G. Hence p is reflexive.
Symmetric: Let x,y € G be such that xpy holds. Then zoy~! € H. Since H is a subgroup
of G, we have yox~! = (xoy=1)~t € H. This yields that ypx. Hence p is symmetric.
Transitive: Let x,y,z € G be such that zpy and ypz. Then xoy ' € H and yoz"' € H
1= (zoy?

transitive. Consequently, p_i

and therefore, x o z

Problem

a®b = ba.

Solution. Note that
(ab)* = abab = a(ba)b = a(a®b)b = a'b*> = ¢

which implies that o(ab) = 1 or 2. But o(ab) = 1 implies that ab = e = a = b~ = b -

impossible. Hence o(ab) = 2.

1 -1 -1
Find o(A),o(B) and o(AB). Is the result surprising?

0 -1 0 1
Problem 16. Consider the elements A = ( 0 > and B = ( ) from SL(2,R).

Solution. It can be shown that o(A) = 4,0(B) = 3 but 0o(AB) = 0.

Problem 17. Suppose a is an element in a group G such that o(a) = 5. Prove that C(a) =
C(a®)
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Solution. We first show that C(a) C C(a®). For this, let x € C(a). Then ax = za and
therefore

3

a*z = a*za = a(azx)a = a(za)a = (ax)a® = (za)a® = zad®

which shows that x € C(a®). So, C(a) C C(a®).

For the reverse inclusion, observe that a® = a. Let y € C(a®) and then
ya =ya® = (ya’)a® = a*(ya®) = a’(a’y) = a’y = ay
which implies that y € C(a) and consequently, C(a®) C C(a). Hence the result follows.
Definition 44. Let (G,0) be a group. If there is an element a € G such that each element

b e G can be expressed as b= a™ (or, in additive notation na) for some n € Z, then a is said

to be a generator of the group (G,o0). In this case we write G = {(a) = {a" : n € Z} (or,

Example 45. Le 1§ a generator
of the group an or of Z. It

ent of V,

generated

e property
that
Let = a" =
(=)™ ) and the
theorem fol O

Note. If a groy

Proof. Let G be a cyclic group generated by a i.e., G = (a). Let z,y € G. Then x = a” and

y = a® for some r,s € Z. Then

+s s+r _ _s_T

zy=a"a®=d""° =a"" =a’d" = yzx.
This is true for all z,y € G. Hence the result follows. (]

Note. Howewver the converse of the above theorem need not be true i.e., an abelian group is

not necessarily cyclic. For example, Kleins 4-group Vy (Example 7) is abelian but not cyclic.
We now prove the following theorems which has a broad application:

Theorem 50. Let G be a finite cyclic group generated by a. Then o(G) = n if and only if

ola) =n
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Proof. Let us first suppose that o(G) = n. We claim that o(a) = n.
Since a € G, we have e, a, a?, - - - are elements of G. Since G is finite, the elements e, a, a?, - - -

rT—S

cannot be distinct. So we have a” = a® for some r, s € Z with r > s. This implies that a"™* = e
and hence o(a) is finite. Let o(a) = k. Then by Theorem 26 (iii), the elements e, a, a2, - -- ,a*~!
are all distinct.

Let H = {e,a,a? ---,a*"1}. It is clear that H C G. Now let + € G. Then x = a™ for
some m € Z. Therefore by division algorithm, there are integers ¢, r such that m = kq +r

where 0 < r < k. Now,
r=am=a""" = (a")%" =ea” = a".

Since 0 < r < k and x = a", it follows that z € H. Hence G C H and consequently, G = H.
Since o(G) = n, it follows that £ = n and hence o(a) = k = n.
hypothesis, G = (a). In @

Conversely, let o(a) = n. We claim similar

way, it can be shown that

Hence o(G) = n.

Theorem 51. i if o(a)

is also a erator

some positive integer r € {1,2,--- ,n — 1}. Then by Theorem 50, o(a”) = n = o(a). Also by

Theorem 29, we have

o(a
)= Gty
Hence ged(r,n) = 1 which implies that r is less than n and prime to n.
Conversely, suppose that r is less than n and prime to n. Then for r € {1,2,--- ,n — 1},
we have (@)
o(a
o(a") = ged(r.m) =o(a) =n.
Hence by Theorem 52, it follows that a” is also a generator of G. ]

Let us recall the Euler’s ¢ function defined on N. We have ¢(1) = 1 and ¢(n) equals to the
number of positive integers less than n and prime to n. For example, ¢(4) = 2 etc. From the

above theorem, we have the following important result:
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Corollary 54. Number of generators of a finite cyclic group of order n is ¢(n).
Theorem 55. Fvery subgroup of cyclic group is cyclic.

Proof. Let G be a cyclic group generated by a and H be a subgroup of G. We claim that H
is a cyclic group.

If H=G or H = {e} where e is the identity element of G, then there is nothing to prove.
So let us suppose that H a non-trivial proper subgroup of G.

Let x € H. Then z € G and so x = a™ for some integer m. Since H is a subgroup of

G, we have 27!

= a~ ™ € H. Since either m or —m is a positive integer, it follows that H
contains an element which is a positive power of a. Then by well ordering property, let m be
the smallest positive integer such that a™ € H. We claim that H is a cyclic group generated
by a™ i.e, H = (a™).

Since a™ € H, it follows

e inclusion, let x € H. Then z € G

and hence x = a? for s n, there are integ

that

s q,r such

where 0 at r = 0. If not, then 0 < r < m and there

a” = gP~"™e = qPq— ™4

ontradiction to the fact that a™

claim that r = 0 is true. Then p q and so

such that
a™ e H. = . en proceeding as
in Theorem 55 we can show that p = mgq for some some ¢ € Z. This shows that m divides p
which implies that m = 1 or p. If m = 1, then H = {e} and if m = p, then H = G. Hence
the theorem. O

Theorem 58. A cyclic group of order n has exactly one subgroup of order d for each positive

divisor d of n.

Proof. Let G = (a) and let o(G) = n. Then o(a) = n and G = {e,a,a?,--- ,a""'}.

Note that the trivial subgroup {e} is the only subgroup of order 1, where e is the identity
element of G. Also G itself is the only subgroup of order n. Let us now take a positive divisor
d of n such that 1 < d < m. Then there is a positive integer ¢ such that n = dgq. Then
1 < g < n. Note that a? € G and o(a?) = Jedtqmy = 4 = d- Let H = (a%). Then H is a cyclic
subgroup of G of order d
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We now show that H is the only subgroup of G of order d. On the contrary, let us suppose
that K be another subgroup of G of order d. Then K = (aP) for some p € Z and therefore
o(a?) = d. Note also that

n n
P\ — — — d = — =4q.
o(a”) gedipn) % (pn)=—=4q
Then p = sq for some s € N. Therefore, a? = a*? = (a?)® € (a?) = H. Hence K = (a”) C H.
Since o(H) = o(K) = d, it follows that H = K and the proof is complete. O

Problem 18. If G be a cyclic group of prime order p, prove that every non-identity element
of G is a generator of G.

Solution. Let G = {(a) be a cyclic group of prime order p. Let a”,1 <r < p be a non-identity
element of G. Then

Solution. F% 101 ) 22 and Zaz = (1). An element m € Zoy

if m is a generator of Zaa, then

2 6

Hence a?,a%,a'?, o

Note. Let G = (a). Letr,s € N. Then H = (a")N{(a®) is a subgroup of G and H = (a'*™("9)),
Example 61. Describe the subgroup 87 N 127Z.

Solution. It is clear that 8Z = (8) and 12Z = (12). Then by the above note 8Z N 12Z =
(lem(8,12)) = (24).

Example 62. Let G = (a). Let H be the smallest subgroup of G that contains a™ and a™.
Prove that H = {(a9¢%(m:n)),

Solution. Let d = ged(m,n). Since G is cyclic, it follows that H is also cyclic. Let k be the
smallest positive integer such that H = (a*). Then k|m and k|n and therefore k|gcd(m,n) = d.
Thus a® € H and so (a?) C H.

Also dlm and d|n. Therefore, a™ € {(a?) and a™ € (a%). Since H is the smallest subgroup

of G _that contains both a™. a™, it follows that <ad} C H. Hence we have H = (ad}
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Problem 19. Let G = (a). Find the smallest subgroup of G containing a® and a'?.

Solution. By the previous example, the smallest subgroup containing a® and a'? is given by
<agcd(8,12)> — <a4>_

Problem 20. Find the smallest subgroup containing 32 and 40.

Solution. Recall that 7Z = (1). Then the smallest subgroup containing 32 and 40 is given by
(gcd(32,40)) = (8).

Problem 21. Let G be a group and a € G. If o(a) = n, then show that o(a*) = o(a" %),
1<k<n.

Problem 22. Let G = (a). Suppose that G has a non-trivial finite subgroup. Prove that G is
a finite group.

Solution. Let H

o(H) i
generators

= a™ for

subgroup

Solution.
numbers under
Now, let H : = 1}. ; lication of

order

Problem 25. Let G be a non-trivial group with no non-trivial proper subgroup. Prove that

G is finite group of prime order.

Solution. Let a be a non-identity element of G. Then {(a) is a non-trivial subgroup of G.
Then by hypothesis, we have G = (a) i,e., G is a cyclic group generated by a.

Now we claim that o(G) is finite. If o(G) is infinite, then (a®) is a non-trivial proper
subgroups of G - a contradiction. Hence o(G) must be finite. Finally, we claim that o(G) is
a prime. If not, then o(G) = mn for some positive integers m,n such that m,n # 1. Since
G s cyclic and m|mn, it follows from Theorem 58 that G has a subgroup of order m - a

contradiction. Hence o(G) is a prime number.

Problem 26. In a group G, the elements a and b commute and ged(o(a),o(b)) = 1. Show

that o(ab) = o(a) - o(b)
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Solution. Let o(a) = m and o(b) = n. Let o(ab) = k. Then we have a™ = b" = (ab)* = e,
where k is the identity element of G. Now
=ec=¢e

which implies that k|mn.
Now

(ab)F = e = a"b* = ¢

—adf=0p"

S ank _ b—nk -

which implies that m|nk. ged(m,n) =1, it follows that

Also

all the non
Suppose

element a € G suc

shows that a is an

must be a cyclic group.

Solution. Since G is a group of even order, it follows from Ezercise 27 that G has an element,
say a, of order 2. By hypothesis, G has an element b of order 5. Then ged(o(a),o(b)) = 1.
Since G is abelian, we have ab = ba. Hence from Ezercise 20, it follow that o(ab) = o(a)-o(b) =
10. This shows that G has an element ab of order 10. Thus, by Theorem 52, G is a cyclic

group.

Problem 29. Let G be a cyclic group of order 30 generated by a. Find the subgroup H of G
of order 6. Find the generators of H.

Solution. Note that o(a) = 30. Now,

5, o(a) 30
o(a”) = ged(5,30) — 5 6.
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Hence a® is an element of G of order 6. Then H = (a®) is a subgroup of G of order 6. Let

(a®)* be a generator of H. Then
5\k o(a”) 6
= _Aa) - d(k,6) = 1.
O((CL ) ) ng(k,G) :6 gcd(k,6) =>gC ( 76)

Therefore, k = 1,5. Hence the generators of H are a® and a?°.

Definition 63. Left Cosets: Let G be a group and H be a subgroup of G. Then for any
a € G, the set aH = {ah : h € H} is called the left coset of H in G. Similarly, the set
Ha = {ha:h e H} is called the right coset of H in G.

Example 64. Let G = S5 and let H = {fo, fa} (see Example 11). Then the left cosets are

foH = H

Therefore 15t ) - ‘ {f2, f5}

{f2, f3}
Itist
It 4 ! note that
the se i ' set of all
Now let : = e left > ell as all
the right co

Example 65. 5 ; . ; : Then the
left cosets of H ;

Therefore the set of all distinct left cosets of H in G are H,bH. Note that H UbH = V.

Theorem 66. Let G be a group and let H be a subgroup of G. Then the following statements
hold good:

(a) hH = H if and only if h € H.

(b) Ifa e G—H, then HNaH = ¢.

(¢) Ifa,be G, then either aH = bH or aH NbH = ¢.
(d) For a,b € G, aH = bH if and only if a~'b € H.
e)
f)

Any two left cosets of H in G have the same cardinality.
The relation defined on G by “apb if and only if a='b € H” for a,b € G is an

equivalence relation
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Proof. (a) Let hH = H. Then h = he € hH = H.

Conversely, let h € H. We claim that hH = H. Let x € hH. Then z = hh' for some
h' € H. Since both h,h’ € H, it follows that x = hh' € H. Hence hH C H.

Let y € H. Since H is itself a group, so by Theorem 17 there exists an element hy € H
such that hhy; = y. This implies that y = hhy € hH and therefore, H C hH. Hence we have
hH = H.

(b) If possible, suppose that H NaH # ¢. Let x € HNaH. Then x € H and = € aH.
So there exists h € H such that 2 = ah which implies that a = xh~! € H - a contradiction.
Hence the result follows.

(c) Let a,b € G. Then aH and bH are two left cosets of H in G. Therefore, aH N bh # ¢
or aH NbH = ¢.

Let aHNbH # ¢. Let ©x € aH = bH. So there exist elements hy, hs € H such that x = ahy
and z = bhy. Then ah; = bho which 3 ndbzahlhz_l. We ¢
aH = bH.

Let p € aH. Then fe

e hs € H, we have

p = ahs = bhohy "hy = bhy

plies that p € bH and therefore aH C b
ists hg € H such that ¢ = bhg. Then

where hy
= ah.
Therefore, a ™ 'b=h € H
Since
b=beebd
for all ah €
Let f(ahq 5 —>
ahi = ahs. He ]
Let bh € bH. iti A . Hence f

is surjective and co
(f) Reflexive:
So p is re
Symmetric: Let a,b € G be such that apb holds. Then a~'b € H. Since H is a group,
(a='b)~! € H i.e., b~'a € H which implies that bpa holds. Therefore p is symmetric.
Transitive: Let a,b,c € G be such that apb and bpc holds. Then a='b € H and b~ 'c € H
and therefore

ale=(a"'b) (b c) € H.

This shows that apc holds and therefore p is transitive. Hence p is an equivalence relation. [

Note. Let us now find the equivalence class of an element a € G under the equivalence relation
defined in (f).
c(a) ={z € G:apz}
={2€G:a 'z c H}
={reG:x€alH}=aH.
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This shows that cl(a) = aH for all a € G. Since the set of all equivalence classes defines a
partition of the set, it follows that the set of all distinct left cosets of H in G forms a partition
of G,

Note. All the above properties established for left cosets are also true for right cosets and can

be established in a similar way and hence can be left as an exercise.
Now we are in a position to prove the famous Lagrange’s theorem on groups.
Theorem 67. Order of every subgroup of a finite group divides the order of the group.

Proof. Let G be a finite group and let H be a subgroup of G. Let o(G) = n. Then the number
of distinct left cosets of H in G is also finite. Let apy,apy, - ,arH deonte the distinct left

cosets of H in G. Then by the above note, {ag,ap, - ,apH} form a partition of G i.e.,
k
G= U a;H and a;H Na;H T a with Chis implies that

i=1

o(ajH) for all 4,5 with ¢ # j. Since H is i oset of H
o(H) for all t =1,2,--- k. Hence

O

= k =the

is called

rem. Here

G = H = (a). Hence G is a cyclic group generated by a. O

Note. From the proof of the above theorem, it follows that every non-identity element of G is

a generator of G and hence number of generator of a group of prime order p isp — 1.

Theorem 69. Let G be a finite group and let a € G. Then o(a)|o(G). Hence a®@) = e,

where e is the identity element of G.

Proof. Let H = (a). Then H is a subgroup of G and o(H) = o(a). Then by Lagrange’s
theorem, o(H)|o(G) i.e., o(a)|o(G).

For the last part, let o(a) = m i.e., a™ = e. Since m|o(G), we have o(G) = mk for some
k € Z. Hence

ao(G) _ amk — (am)k —e.

|
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In view of the above theorem, it seems to happen that in an infinite group all the elements
are of infinite order. However this is not true in general. There are infinite groups each element
of which has finite order (see Example 9). The following problem provides another example

of an infinite group having the same property.

Problem 30. Let S = U{xeC:x”:l}:{xeC:x":l,nGN}. Show that S is an

neN
infinite group under the usual multiplication of complex numbers in which each element has

finite order.

Theorem 70. If p be a prime and a be an integer such that p is not a divisor of a, then
a?~! = 1(mod p).

Proof. Let us first choose a € {1,2,--- ,p — 1}. Consider the group (Z, — {0},-,) where -,

denotes the multiplication modulo.p =p—landaeZ,—{

table for 1
(13)(24),
(143), aq1

Qs Qs ag Qg (%4 Qg | Q12 | Qo | Q11 | O Qg (€3] %]

Qg Qg ar Qs Qg | Qo | (11 | Qg | Qi1 | Qg Q3 (€3] Oy

ar ar Qg ag Qs | 11 | Q10 | 2 | Qg a3 (&%) Qg 51

ag ag as ar Qg 12 Qg Q11 | Q10 o7 aq a3 a2

Qg Qg a11 | &2 | @10 a1 as Qg a2 as ar ag [&75]

Q1o | 1o | 12 | Q11 | Qg (&%) Qg ag aq Qg Qg ar Qs

Qi1 | 11 | Qg | Qpp | (12 | (3 (€3] (&%) Qg ar Qs Qg Qag

Qi2 | (2 | g | Qg | (g1 | Q4 (6%) ag Qs ag (673 as (%4
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From the above table, we see that Ay contains 8 elements of order 3 and are as,--- ,a12. We
claim that A4 has no subgroup of order 6. Let H be a subgroup of Ay of order 6. Let a be an
element in Ay of order 3. Since [Ay : H] = 2, the left cosets H,aH,a?H cannot be all distinct.
Now H = aH implies that a € H. If aH = o®>H, then a®’H = a®H = H. Therefore, in rest of
the cases, we have a>?H = H and therefore, H = a®H = aH which again implies that a € H.
Hence in case we find the a € H. Since a was taken arbitrarily from Ay, it follows that H
contains all the 8 elements of Ay-which is a contradiction. Hence Ay does not have a subgroup
of order 6.

Problem 31. Prove that every group of order < 6 is commutative.

Solution. If G be a group of order 1, then G = {e}, where e is the identity element of G.

Then G = (e) and hence commutative.
If o(G) = 2,3,5, then G is , p ¢ ' 68. Then
by theorem 49, G is co

e binary operation o is well-defined. It is easy to see e identity element
in G/H and a='H is the inverse of aH € G/H. Rest of the properties are easy to verify.
Hence (G/H,o) is a group. This group is called the factor group or quotient group.

In addition, if G is commutative, then the quotient group G/H is commutative and if
G = (a) is a cyclic group generated by a, then G/H = {(aH) is also a cyclic group. But
the converse is not true. For example, consider G = Ss and H = {fo, f1, fo}. Then H is a
normal subgroup of G. Note that o(G/H) = Zég)) = 2 and hence G/H is cyclic as well as
commutative, but Ss is neither cyclic nor commutative.

Problem 32. Let P and Q are subgroups of a group G such that o(o(P),0(Q)) = 1. Prove
that PN Q = {e}.

Solution. Note that P N Q is a subgroup of P and Q. Then o(P N Q)|o(P) as well as
e

(
o(POQ)o(Q). This implies that o( PN Q) =1 and hence PN Q) = {e}
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Problem 33. Let G be a group of order pq where p and q are distinct primes. Prove that

every proper subgroup of G is cyclic.

Problem 34. Prove that a non-commutative group of order 10 must have a subgroup of order
5.

Solution. Let G be a group of order 10. Then the order of elements of G are 1,2,5, or 10.
Since G is non-commutative, G cannot have an element of order 10.

If possible suppose that G has no element of order 5. Then all the non-identity elements of
G are of order 2.

Let a,b € G. Then ab € G. By hypothesis, o(a) = o(b) = o(ab) = 2 which implies that

a=a1,b=b""1 and

ab=(ab)"' =b"ta"! = ba.

G of

This shows that G is commutatives='a contradictio ) e must have an eleme

order 5.
Problem 35. Prove

,9, or
58, G

°r N 1S

order m is the number of positive divisors of n.

Problem 39. Let H and K be two subgroups of a group G such that o(H) = o(K) = p where
p is a prime. Show that H N K = {e}.
Deduce that if G has exactly m distinct subgroups of prime order p, then the total number

of elements of order p is m(p — 1).

Problem 40. Let G be a cyclic group of order 12 generated by a and H be the subgroup of
G generated by a*. Show that the distinct left cosets of H in G are H,aH,a?H,a*H. Verify
that H U a®H is a also a subgroup of G.

Problem 41. Let G be an infinite cyclic group generated by a i.e., G = (a) and let H be
the subgroup generated by o® i.e., H = (a®), where s is a positive integers > 1. Prove that

H, aH,a?H,--- ,a*"'H is a complete list of distinct left cosets of H in G
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Problem 42. Suppose that G is an abelian group with an odd number of elements. Show that
the product of all of the elements of G is the identity.

Solution. Since o(G) is odd, therefore G cannot have any element of order 2. Thus, each
non-identity element x of G has an inverse with x # x~1. So we can write the elements of
L and hence the product of all these elements must be e, the

-1 —1 _
G as €,0a1,07 ,A2,09 "+ ,0n, Ay

identity element of G.

Problem 43. Let o(G) = pq, where p,q are distinct primes. If G has only one subgroup of

order p and only one subgroup of order q, then prove that G is cyclic.

Solution. Let H be the subgroup of G of order p and let K be the subgroup of G order q. Then
HUK hasp+q—1 < pq elements. Let a € G be such that a ¢ HUK. By Lagrange’s theorem
o(a) = p,q, or pqg. If o(a) = p, then (a
H = (a). This implies tha Nty 0 @ similar way, o(a) # q.| Hence we

is a subgroup of G of order p and by hypothesis,

must have o(a) = pq .a

o element
note that
,20, or 30

elements

ght cosets

Theorem 74.

Proof.plue oroup and le 5 C : hen, since
ab = ba for all a,b € G, we have

aH={ah:he H} ={ha:he H} = Ha
which implies that HAG. O

Example 75. Let G be a group and let H be a subgroup of G such that [G : H| = 2. Prove
that HAG.

Proof. Since |G : H] = 2, there are two distinct left cosets as well as two distinct right cosets.
Let x € G. If v € H, then vtH = H = Hx. Now let x € G — H. Then zH is a left coset other
than H and Hzx is a right coset other than H. Hence we must have xtH = Hz. Hence the

result follows. O

Theorem 76. Test for normality: Let H be a subgroup of G. Then HAG if and only if

for any g € G and h € H, we have ghg~' € H
Dr. Pratikshan Mondal, real.analysis77@Qgmail.com Study material



real.analysis77@gmail.com

Group Theory

Proof. Let us first suppose that HAG. Then gH = Hg for all g € G.
Let z € G and h € H. Then zh € vH = Hzx. So there exists i’ € H such that
th=hz = zha ' =h' € H.
Conversely, let for any g € G and for any h € H, we have ghg~' € H. We show that HAG.
Let g € G. Let x € gH. Then for some h; € H, we have

z=gh1 =ghig 'g € Hyg

as gh1g~! € H. This implies that gH C Hyg.
Now, let y € Hg. So there exists y = hag for some ho € H. Now

y=hag =99 thag=gg tha(g™") " € gH
as g-' € G and g7 tha(g71)~! € H. This shows that Hg C gH. Consequently, gH = Hyg.

subgroup
Now, let ¢ : . and

i.e., o(G/H) = 2. ( et G/H
which imp 2
For the second part, Let H be a subgroup of G = Ay of order 6. Then [G : H| = 2. Then
by first part, we have x> € H for all z € G = Ay.
Now note that Ay has 12 elements of which «y is the identity element (see Example 71).
Also

2 2 2 2
a1 = Qy = Q3 =y = Qag.
2 2 2 2 2 2 2 2
Qp = Qg, Qg = 11, Q7 = (2, g = (10, Qg = A5, X g = A8, 1 = A6, Ajp = Q7.
Hence there are more than 6 squares belongs to H - a contradiction to the fact that o(H) = 6.
Hence G = Ay cannot have a subgroup of order 6.

Readers are requested to compare the following result with the Example 64.

Problem 47. Let H be a subgroup of a group G such that every left coset of H is also a right

coset of H in G. Prove that HAG
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Solution. Let a € G. Then by hypothesis, there exists an element b € G such that aH = Hb.
Note that a = ae € aH = Hb. Also a = ea € Ha. Therefore, a € Ha N Hb. Since any two
right cosets are either disjoint or equal, we get Ha = Hb = aH. This is true for all a € G
and hence HAG.

Problem 48. Let H be a subgroup of a group G such that the product of any two left cosets
of H is a left coset of H. Prove that HAG.

Solution. Let a € G. Then by hypothesis, there exists b € G such that aHa='H = bH. Now,
e = aea"te € aHa 'H = bH. So there exists an element h € H such that e = bh which
implies that b= h~' € H. Hence we have aHa 'H = H and therefore,

aHa ' Cc aHa 'H = H.
This proves that HAG.

Problem 49. Let G ; 2 [ matrices.
Prove that H is n

1
Solution. G and let B = (0 ) . ; ) and

b )G

and therefore ¢ H. at H is not

a normal subgroup of G.

Problem 50. Let M and N be two normal subgroups of a group G such that M N N = {e}.
Prove that mn = nm for all m € M and for alln € N.

Solution. Let m € M and n € N. Since NAG, we have mnm™' € N and therefore,
mnm~n~! € N. Again, since MAG, we have nm~'n=!' € M. Since m € M, we have
mnm~In=t € M. This shows that mnm~In=' € M NN = {e}. Therefore,

mnm ™ 'n"! = e = mn(nm)! = e = mn =nm.

This is true for allm € M and for alln € N.

Problem 51. Let G be a group and a € G in which (ab)® = a®b? for all a,b € G. Prove that

H = {23 : 2 € G} is a normal subgroup of G
Dr. Pratikshan Mondal, real.analysis77@Qgmail.com Study material



real.analysis77@gmail.com

Group Theory

Solution. Let a,b € H. Then there exists p,q € G such that a = p®,y = ¢>. Then
ab™' =pPq~® = (pg")® by hypothesis.

Since pg~! € G, then (pg~1)® = ab=! € H, it follows that H is a subgroup of G.

Now let g € G. Then

gag™ "t =gp*g~ = (gpg™')?

and since gpg~' € G, it follows that gag=' € H. This is true for all g € G and for all a € H.
Hence HAG.

Problem 52. Let G be a group and a € G. Prove (a) is a normal subgroup of C(a).

Solution. Let g € C(a) and let h € (a). Then h = a™ for some m € Z. Then

ghg™' = gamg™' = gg ta™ = a™ € (a)

Prove

Now note . 2g=Y € H. It is also to be noted that x2 is the ¢

t have

Solution. Let H . ‘ ( he set

gHg™ ={ghg™":
Let ghig™?

as hihy' € H. Hence gHg™" is a subgroup of G.
We claim that o(gHg™') = o(H). Define a mapping f : H — gHg~* by f(h) = ghg™! for

all h € H. Let hy,ho € H. Then

f(h1) = f(h2)

= ghig™! = ghag™"

<= hi = hs.
This shows that f is well defined and injective. Definition of f clearly shows that f is surjective
and hence f is bijective. Consequently, o(H) = o(gHg™'. Then by hypothesis, gHg~' = H
which implies that gH = Hg. This is true for all g € G. Hence HAG.

Problem 55. Prove that every subgroup of Qs is normal (see Example 5).
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Solution. Let H be a subgroup of Qs. Then o(H) =1,2,4, or 8.

If o(H) =1, then H = {e} and HAG.

If o(H) =8, then H =G and HAG.

If o(H) =4, then |G : H] = 2 and hence by Example 75, HAG.

Now, let o(H) = 2. Then H is cyclic and must be generated by an element of Qg of order
2. Note that Qg has only one element, say —1, of order 2. Hence H is the only subgroup of
Qs of order 2. Hence by Example 79, we have HAG.

Problem 56. Let G be a non-commutative group of order 2p, p being an odd prime. Prove

that there exists atleast one element of order p in G. If o(a) = p, prove that (a) is normal in

G.

Problem 57. Let H be a normal subgroup of a group G such that o(H) = 3 and |G : H] = 10.
If a € G and o(a) = 3, prove_ti

Note. The contrapositive statement of the above theorem is as follows:

“if G is non-commutative, then G/Z(G) is not cyclic.”
Problem 59. Prove that a non-abelian group of order 10 must have a trivial centre.

Solution. Let G be a group of order 10. Then o(Z(G)) = 1,2,5, or 10. Since G is non-
abelian, so G # Z(G) and hence o(Z(Q)) # 10.

Let o(Z(G)) = 5. Then o(G/Z(G)) = % = 2 and therefore, G/Z(QG) is a cyclic group.
Hence by Theorem 80, we have G is commutative - a contradiction. Thus, o(Z(G)) # 5.

In a similar way o(Z(G)) # 2. Hence we have only o(Z(G)) = 1 which shows that Z(G) =
{e}. Hence the result follows.

Example 81. Prove that Z(S3) = {e}
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Solution. Note that o(Z(S3)) = 1,2, or 3.

If o(Z(Ss)) = 2, then o(S3/Z(S3)) = 3, a prime number. Therefore, S3/Z(S3) is cyclic
and hence by Theore 80, Ss is commutative - a contradiction.

If o(Z(S3)) = 3, then o(S5/Z(S3)) = 2, a prime number. Therefore, S3/Z(Ss) is cyclic
and hence again by Theore 80, S3 is commutative - a contradiction.

We have only one possibility and therefore o(Z(Ss)) =1 and the result follows.
Problem 60. Find the order of 5+ (6) in the quotient group Z1s/(6).

Solution. Let G = Zs and let H = (6) = {0,6,12}. Then o(H) = 3 since o(6) = 3. Then
G/H={0+H,1+H,2+H,3+H,4+ H,5+ H}. Then it is easy to verify that (5+ H) = 6.

Problem 61. Let G be a finite group and HAG. Prove that for each g € G, the order of the
element gH € G/H divides o(g).

Solution. Let g € G be vat o(g) = k. Now, let o(gH) e claim that n|
(gH)* == ¢*H = H.

n|k i.e., o(gH)|o(g).

claim that N(H)
Let a,b e N(H).

which implies that ab=! € N(H). Hence N(H) is a subgroup of G.

Definition 84. Normaliser of a subgroup: Let G be a group and HAG. Then the subgroup
N(H)={z € G:xzHx ' = H} is called the normaliser of H in G.

Problem 63. Let G be a group and H be a subgroup of G. Prove that
(a) HAN(H).
(b) HAG if and only if N(H) = G.
(¢) N(H) is the largest subgroup of G in which H is normal i.e., if HAK, where K is a
subgroup of G, then K C N(H).

Solution. (a) Let g € N(H) and h € H. Then gHg™' = H. We claim that ghg™! € H.
This is trivially true from the definition i.e., ghg™' € gHg™' = H. Hence HAG.

(b) If N(H) = G, then from part (a), it follows that HAG
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Conversely, let HAG. Then for all g € G, we have gH = Hg i.e., gHg~' = H which
implies that g € N(H). Therefore, G C N(H).

It is clear that N(H) C G. Thus G = N(H).

(c) Let K be a subgroup of G such that HAK. Then for all k € K, we have kH = Hk
which implies that k € N(H). This shows that K C N(H). Hence the result follows.

Definition 85. Let G be a group. Let a € G. An element b € G is said to be a conjugate

of a if there exists an element ¢ € G such that b= cac™!.

Example 86. Conjugacy relation in a group: Let G be a group. Define a relation p on
G by : fora,b € G, apb if and only if b is a conjugate of a. Then p is an equivalence relation

on G.
1

Reflexive: For any g€ G, g =ege™ .

Thus for all g € G, g is a conjugate of g.

Symmetry: Let a,b € G be here exists an element ¢ &G such that
1= c a

€ G be such that apb and bpc. So't e such that

e xy € G,

relation

respect to
Therefore,

ents of [a]

* 0([(1]) =

G. Then
: F = [d]
mapping.

Therefore f is an well defined injective mapping. It is obvious that f is surjective and hence
bijective. Consequently, o([a]) = o(F) = [G : C(a)]. O

Theorem 89. Let G be a finite group. Then
o(G) =Y [G: C(a)]

a

where the summation is over a complete set of distinct conjugacy class representatives.

Proof. From Example 86, it follows that G = |J,[a], where the union runs over a complete set
of distinct conjugacy class representatives. Since the distinct conjugacy classes are mutually
disjoint, we have

o(G) =3 olla]) = Y [G: C(a)]

a a
by Theorem 88 1
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Problem 64. Let G be a group and a € G. Prove that a € Z(G) if and only if C(a) = G.

Solution. First, let a € Z(G). We always have C(a) C G. Now for any g € G, we have
ga = ag which implies that g € C(a) and therefore G C C(a). Hence C(a) = G.

Conversely, let C(a) = G. Let g € G. Then g € C(a) and so ga = ag. This is true for all
g € G. Hence a € Z(G).

Theorem 90. Let G be a finite group. Then
o(G) =o(Z(@G)+ Y [G:Cla)]

¢ Z(G)
where Z(G) denotes the centre of G and the summation runs over a complete set of distinct

conjugacy class representatives, which do not belongs to Z(G).

where the summation runs ‘ isti j entatives,

where the s
which do not
example.

Example 91. Let

is self-conjugate.

1 1 2 3
which implies that 5 3 1 is conjugate to 5 1 o) Since order of an element and its

conjugates are the same, no element of order 2 is conjugate to an element of order 3. Hence

(I (R

In a similar way, we have another conjugacy class
1 2 3 1 2 3 1 2 3
2 1 3/°\1 3 2/'\3 2 1/[
1 2 3 1 2 3 1 2 3
Then Ss has three conjugacy classes , , and
1 2 3 2 3 1 3 1 2
{(1 2 3) (1 2 3) (1 2 3)}
2 1 3)°\1.3 2)°\3 2 1)[°
\ 7 \ 7 AN 7
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Therefore the class equation is given by

ol 33

6 = 1 + 2 + 3.

o(S3) = 0(Z(G)) +

Problem 65. Let G be a finite group and a € G be such that a has only two conjugates.
Prove that C(a) is a normal subgroup of G.

Solution. From Theorem 88, we have |G : C(a)] = o([a]). By hypothesis, o([a]) = 2. Hence
(G : C(a)] =2 and hence by Example 75 we have C(a) is a normal subgroup of G.

Problem 66. Let G be a finite group that has only two conjugate classes. Show that o(G) = 2.

ag for all

Solution. We ' . Observe

that for any x &

= zyr

It can be shown that [I| = {-1,1},[J) ={-J,J},[K] = {—K,K}. Hence the class equation
of Qs 1s

0o(Qs) = 0(Z(Qs)) + [Qs : C(I)] + Qs : C(J)] + [Qs : C(K)]
8 = 2+ 2+ 2 4+ 2

Problem 69. Find the conjugacy classes in Dy and write down the class equation.

Note. To find the conjugacy classes of S3, we first construct the Cayley table as follows:

Let a, b € Ss be such that o(a) =3 and o(b) = 2. Then it can be easily shown that
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e | ala?| b | ab |a?b
e | e |al|a®| b | ab |a®
a a |a®| e | ab |a®b]| b
a> | a®> | e | a|a®| b | ab
b b e
ab | ab e
a2b | a2 2

Let us now fill up the pty cells. For, the element ba, we have one of the

possibilities:

2

. ba = a® or, ba = ab or, ba = a®b.

It is clear t which

implies th

It is also clea

For the eleme

bab = a or, bab = a“.

If bab = a, then abab = a? - a contradiction as shown earlier. So we have bab = a?.
Finally, for the element ba®b has only one possibility i.e., ba’b = a.
We now find out the elements related to the element ab. Note that

aba = a(a®b) = b,aba® = a(ab) = ab, abb = a, ab(a®b) = a(ab)b = d°.
Similarly, the elements of the last row will be as follows:

a’ba = a*(a®b) = ab,a’ba® = a*(ab) = b, a*b(ad) = a*(a?) = a.

Hence the complete table will be looked like as follows:
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e a [ a® | b | ab | a?b
e | e | a|a®]| b | ab|a®
a a | a? e | ab |a®b | b
a® | a® | e a |a*h| b | ab
b b |a®b| ab | e | a® | a
ab | ab | b |a®| a | e | a®
27 2

cee ! aeat a%e(a®) 7t beb™ ! abe(ab)”

aaa™t, a’a(a?®)7, bab™ ", aba(ab) ", a®ba(a®b)”

bab, aba®b, a*bab}

Hence from

is given by
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