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Binary Composition: A binary operation or law of composition on a set G is a function

◦ : G×G → G that assigns to each pair (a, b) ∈ G×G a unique element a ◦ b in G, called the

composition of a and b.

Group: A group (G, ◦) is a set G together with a law of composition (a, b) → a ◦ b that

satisfies the following axioms:

(1) For any a, b ∈ G, the composition a ◦ b ∈ G (Closure Property).

(2) The law of composition is associative. That is,

(a ◦ b) ◦ c = a ◦ (b ◦ c)

for all a, b, c ∈ G (Associative Property).

(3) There exists an element e ∈ G, called the identity element, such that for any element

a ∈ G

a ◦ e = e ◦ a = a

holds (Existence of Identity).

(4) For each element a ∈ G, there exists an inverse element in G, denoted by a−1 , such

that

a ◦ a−1 = a−1 ◦ a = e

holds (Existence of inverse element).

A group (G, ◦) is said to be an abelian group or a commutative group if for any two elements

a, b ∈ G, a ◦ b = b ◦ a holds.

Example 1. The integers Z = {· · · ,−4,−3,−2,−1, 0, 1, 2, 3, 4, · · · } form a group under the

operation of addition. The binary operation on two integers m,n ∈ Z is just their sum. Since

the integers under addition already have a well established notation, we will use the operator

+ instead of ◦; that is, we shall write m+n instead of m◦n. The identity is 0, and the inverse

of n ∈ Z is written as −n instead of n−1. Notice that the set of integers under addition have

the additional property that m+ n = n+m and therefore form an abelian group.

Remark. Most of the time we will write ab instead of a ◦ b; however, if the group already has

a natural operation such as addition in the integers, we will use that operation. That is, if we

are adding two integers, we still write m + n, −n for the inverse, and 0 for the identity as

usual. We also write m−n instead of m+(−n). It is often convenient to describe a group in

terms of an addition or multiplication table. Such a table is called a Cayley table.

Example 2. The integers mod n form a group under addition modulo n. Consider Z5 ,

consisting of the equivalence classes of the integers [0], [1], [2], [3], and [4]. We define the group

operation on Z5 by modular addition. We write the binary operation on the group additively;

that is, we write [m] + [n]. The element [0] is the identity of the group and each element in

Z5 has an inverse. For instance, [2] + [3] = [3] + [2] = [0]. Figure given below is a Cayley
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table for Z5 . It can also be shown that Zn = {[0], [1], · · · , [n− 1]} is a group under the binary

operation of addition mod n.

[0]

[0]

[1]

[1]

[2]

[2]

[3]

[3]

[4]

[4][0]

[1]

[2]

[3]

[4]

[1] [2] [3] [4] [0]

[2] [3] [4] [0] [1]

[3] [4] [0] [1] [2]

[4] [0] [1] [2] [3]

+

Example 3. Not every set with a binary operation is a group. For example, if we let modular

multiplication be the binary operation on Zn , then Zn fails to be a group. The element [1]

acts as a group identity since [1] · [k] = [k] · [1] = [k] for any [k] ∈ Zn; however, a multiplicative

inverse for [0] does not exist since [0] · [k] = [k] · [0] = [0] for every [k] ∈ Zn . Even if we

consider the set Zn \ {[0]}, we still may not have a group. For instance, let [2] ∈ Z6. Then [2]

has no multiplicative inverse since

[0] · [2] = [0] [1] · [2] = [2]

[2] · [2] = [4] [3] · [2] = [0]

[4] · [2] = [2] [5] · [2] = [4]

Example 4. We use M2(R) to denote the set of all 2× 2 matrices. Let GL2(R) be the subset

of M2(R) consisting of invertible matrices; that is, a matrix A =

[
a b

c d

]
is in GL2(R) if there

exists a matrix A−1 such that AA−1 = A−1A = I , where I is the 2× 2 identity matrix. For

A to have an inverse is equivalent to requiring that the determinant of A be non-zero; that is,

det(A) = ad− bc ̸= 0. The set of invertible matrices forms a group called the general linear

group.

The identity of the group is the identity matrix I =

[
1 0

0 1

]
.

The inverse of A ∈ GL2(R) is

A−1 =
1

ad− bc

[
d −b

−c a

]
.

The product of two invertible matrices is again invertible. Matrix multiplication is associative,

satisfying the other group axiom. For matrices it is not true in general that AB = BA; hence,

GL2(R) is another example of a nonabelian group.

Example 5. Let 1 =

[
1 0

0 1

]
, I =

[
0 1

−1 0

]
, J =

[
0 i

i 0

]
and K =

[
i 0

0 −i

]
where i2 = −1.

Then the relations I2 = J2 = K2 = −1, IJ = K,JK = I,KI = J, JI = −K,KJ = −I, and

IK = −J hold. The set Q8 = {±1,±I,±J,±K} is a group called the quaternion group.

Notice that Q8 is non-commutative.

Example 6. Let C∗ be the set of all non-zero complex numbers. Under the operation of

multiplication C∗ forms a group. The identity is 1. If z = a + bi is a non-zero complex
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number, then

z−1 =
a− bi

a2 + b2

is the inverse of z. It is easy to see that the remaining group axioms hold.

A group has finite order, if it contains a finite number of elements; otherwise, the group

is said to be of infinite order. The order of a finite group is the number of elements that it

contains. If G is a group containing n elements, we write |G| = n or o(G) = n. The group

Z5 is a finite group of order 5; the integers Z form an infinite group under addition, and we

sometimes write |Z| = ∞.

Example 7. Let S = {e, a, b, c} and let ∗ be the binary composition defined on S by e ∗ a =

a ∗ e = a, e ∗ b = b ∗ e = b, e ∗ c = c ∗ e = c, e ∗ e = a ∗ a = b ∗ b = c ∗ c = e, a ∗ b = b ∗ a =

c, c ∗ a = a ∗ c = b, b ∗ c = c ∗ b = a. Then (S, ∗) is an abelian group. This group is known as

Klein’s 4-group and is denoted by V4. It is to be noted that each element of V4 is self inverse.

Example 8. For a, b ∈ Z, let a ◦ b = a+ b+ 1. Prove that (Z, ◦) is an abelian group.

Closure property: Let a, b ∈ Z. Then a+ b+ 1 ∈ Z i.e., a ◦ b ∈ Z. That ◦ is closed in Z.
Associative property: Let a, b, c ∈ Z.

a ◦ (b ◦ c) = a ◦ (b+ c+ 1) = a+ (b+ c+ 1) + 1 = a+ b+ c+ 2

(a ◦ b) ◦ c = (a+ b+ 1) ◦ c = (a+ b+ 1) + c+ 1 = a+ b+ c+ 2

Existence of identity: let e ∈ Z be such that a ◦ e = e ◦ a = a.

Now

a ◦ e = a =⇒ a+ e+ 1 = a =⇒ e = −1

e ◦ a = e+ a+ 1 = −1 + a+ 1 = a

Therefore e is the identity element of Z.
Existence of inverse: Let a ∈ Z. Suppose that there is b ∈ Z such that a ◦ b = b ◦ a = e.

Now,

a ◦ b = e =⇒ a+ b+ 1 = −1 =⇒ b = −2− a

b ◦ a = b+ a+ 1 = −2− a+ a+ 1 = −1 = e

Hence b = −2− a is the inverse of a.

Commutative property: Let a, b ∈ Z. Then

a ◦ b = a+ b+ 1 = b+ a+ 1 = b ◦ a

Hence (Z, ◦) is an abelian group.

Example 9. Let X be a no-empty set and let P (X) denote the set of subsets of X. Examine

if P (X) is a group under the composition defined by

(i) A ∗B = A ∩B, A,B ∈ P (X).

(ii) A ◦B = A ∪B, A,B ∈ P (X).

(iii) A •B = A∆B = (A−B) ∪ (B −A), A,B ∈ P (X).

Solution: (i) It is easy to verify that closure, associative property is satisfied in P (X)

under ∗. It is also easy to verify that X is the identity element of P (X) with respect to ∗.
However, it is clear that for ϕ ∈ P (X), there is no element A in P (X) such that ϕ ∗ A = X,

the identity element. Hence ϕ does not have any inverse with respect to ∗ and so (P (X), ∗) is
not a group.

(ii) It is easy to verify that closure, associative property is satisfied in P (X) under ◦. It

is also easy to verify that ϕ is the identity element of P (X) with respect to ◦. However, it is
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clear that for X ∈ P (X), there is no element A in P (X) such that X ◦ A = ϕ, the identity

element. Hence X does not have any inverse with respect to ◦ and so (P (X), ◦) is not a group.

(iii) It easy to verify that closure and associative properties hold good in P (X) under •.
Note that ϕ is the identity element in P (X) with respect to •. Also for any A ∈ P (X),

it is clear that A • A = ϕ and hence A is the inverse of itself. Also for any two elements

A,B ∈ P (X), we have A •B = B •A. Hence (P (X), •) is a commutative group.

Example 10. Prove that the set H =

{[
a b

−b a

]
: a, b ∈ R, a2 + b2 = 1

}
forms a group with

respect to matrix multiplication.

Solution. It is obvious that H ̸= ϕ, as

[
1 0

0 1

]
∈ H.

Let A =

[
a b

−b a

]
and B =

[
c d

−d c

]
be two elements in H. Then

AB =

[
a b

−b a

][
c d

−d c

]
=

[
ac− bd ad+ bc

−(ad+ bc) ac− bd

]
.

Note that

(ac− bd)2 + (ad+ bc)2 = (a2c2 + b2d2 + a2d2 + b2c2) = (a2 + b2)(c2 + d2) = 1.

Therefore AB ∈ H and closure property is verified. It is not very difficult to verify associative

property. Note that I =

[
1 0

0 1

]
is the identity element in H. Now let A =

[
a b

−b a

]
∈ H.

Then the inverse of A is given by A−1 =

[
a −b

b a

]
.

It is also easy to verify that AB = BA for all A,B ∈ H.

Example 11. Let S = {1, 2, 3} be a set of order 3. A permutation on S is a bijective mapping

on S i.e., a bijective mapping from f : S → S. Let G be the set of all permutations on S.

Then

f0 =

(
1 2 3

1 2 3

)
, f1 =

(
1 2 3

2 3 1

)
= (1 2 3), f2 =

(
1 2 3

3 1 2

)
= (1 3 2),

f3 =

(
1 2 3

1 3 2

)
= (2 3), f4 =

(
1 2 3

3 2 1

)
= (1 3), f5 =

(
1 2 3

2 1 3

)
= (1 2)

defines the set of all permutations on S. Then G = {f0, f1, f2, f3, f4, f5} forms a group under

the composition “composition of mappings”. It can be shown easily that G is not abelian

(verify!). The group G is known as symmetric group of degree 3 and is denoted by S3.

Note that order of the group S3 is 6.

As you know that (1 2 3) is called a 3-cycle. A 2-cycle is called a transposition. Every

permutation can be written as a composition of transpositions. For example, (1 2 3) = (1 3) ◦
(1 2).

A permutation is called even if it can be written as a composition of even number of trans-

positions otherwise it is called an odd permutation. Therefore (1 3 2) is an even permutation.

The identity permutation is an even permutation. It is to be noted that S3 contains 3 even per-

mutation and 3 odd permutations. The set A3 of all even permutations, i.e., A3 = {f0, f1, f2},
forms a group with respect to the same composition which is defined in S3. The group A3 is

called alternating group. Note that o(A3) = 3 = o(S3)
2 . It is also to be noted that A3 is an

abelian group.
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In a similar way, it can be shown that Sn, the set of all permutations on a set of n symbols

{1, 2, · · · , n}, forms a group under the composition “composition of mappings” and the set An

of all even permutations forms a group under the same composition. It is also to be noted that

o(Sn) = n! and o(An) =
n!
2 .

Basic Properties of Groups:

Theorem 12. The identity element in a group G is unique; that is, there exists only one

element e ∈ G such that eg = ge = g for all g ∈ G.

Proof. Suppose that e and e′ are both identities in G. Then eg = ge = g and e′g = ge′ = g

for all g ∈ G. We need to show that e = e′ . If we think of e as the identity and e′ an element

of G, then ee′ = e′; but if we consider e′ is an identity and e an element of G, then ee′ = e.

Combining these two equations, we have e = ee′ = e′. □

Theorem 13. If g is any element in a group G, then the inverse of g, denoted by g−1, is

unique.

Proof. Inverses in a group are also unique. If g′ and g′′ are both inverses of an element g in a

group G, then gg′ = g′g = e and gg′′ = g′′g = e. We want to show that g′ = g′′ , but

g′ = g′e = g′(gg′′) = (g′g)g′′ = eg′′ = g′′.

□

Theorem 14. Let G be a group. If a, b ∈ G, then (ab)−1 = b−1a−1.

Proof. Let a, b ∈ G. Then

abb−1a−1 = aea−1 = aa−1 = e.

Similarly,

b−1a−1ab = e.

But by the previous theorem, inverses are unique; hence, (ab)−1 = b−1a−1. □

Theorem 15. Let G be a group. For any a ∈ G, (a−1)−1 = a.

Proof. Observe that a−1(a−1)−1 = e. Consequently, multiplying both sides of this equation

by a, we have

(a−1)−1 = e(a−1)−1 = aa−1(a−1)−1 = ae = a.

□

It makes sense to write equations with group elements and group operations. If a and b are

two elements in a group G, does there exist an element x ∈ G such that ax = b? If such an x

does exist, is it unique? The following proposition answers both of these questions positively.

Theorem 16. If G is a group and a, b, c ∈ G, then ba = ca implies b = c and ab = ac implies

b = c.

This theorem tells us that the right and left cancellation laws are true in groups. We leave

the proof as an exercise.

Theorem 17. Let G be a group and a and b be any two elements in G. Then the equations

ax = b and xa = b have unique solutions in G.
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Proof. Suppose that ax = b. We must show that such an x exists. We can multiply both sides

of ax = b by a−1 to find x = ex = a−1ax = a−1b.

To show uniqueness, suppose that x1 and x2 are both solutions of ax = b; then ax1 = b =

ax2. So x1 = a−1ax1 = a−1ax2 = x2. The proof for the existence and uniqueness of the

solution of xa = b is similar. □

We can use exponential notation for groups just as we do in ordinary algebra. If G is a

group and g ∈ G, then we define g0 = e. For n ∈ N, we define

gn = g · g · · · g

and

g−n = g−1 · g−1 · · · g−1.

Theorem 18. In a group, the usual laws of exponents hold; that is, for all g, h ∈ G,

1. gmgn = gm+n for all m,n ∈ Z;
2. (gm)n = gmn for all m,n ∈ Z;
3. (gh)n =

(
h−1g−1

)−n
for all n ∈ Z. Furthermore, if G is abelian, then (gh)n = gnhn.

We will leave the proof of this theorem as an exercise. Notice that (gh)n ̸= gnhn in general,

since the group may not be abelian. If the group is Z or Zn, we write the group operation

additively and the exponential operation multiplicatively; that is, we write ng instead of gn.

The laws of exponents now become

1. mg + ng = (m+ n)g for all m,n ∈ Z;
2. m(ng) = (mn)g for all m,n ∈ Z;
3. m(g+h) = mg+mh for all m,n ∈ Z. It is important to realize that the last statement

can be made only because Z and Zn are commutative groups.

Problem 1. For any two elements a, b in a group G and for any integer n, prove that

(aba−1)n = abna−1.

Problem 2. Let G be a group and a ∈ G. Define a mapping fa : G → G by fa(x) = a ◦ x for

all x ∈ G. Prove that fa is a bijection. Show that the set S = {fa : a ∈ G} is a group with

respect to the binary composition fa ∗ fb = fa◦b for all fa, fb ∈ S.

Problem 3. If each element in a group be its own inverse, prove that the group is abelian.

Solution. Let G be a group. By hypothesis, a = a−1 for all a ∈ G. Let a, b ∈ G. Then ab ∈ G

and therefore, a = a−1, b = b−1 and ab = (ab)−1. Hence

ab = (ab)−1 = b−1a−1 = ba.

This is true for all a, b ∈ G and hence G is abelian.

Problem 4. If in a group G, a2 = e for all a ∈ G, then prove that G is abelian.

Solution. Let a ∈ G. So a−1 ∈ G. Then by hypothesis, a2 = e and so

a−1a2 = a−1e or, a = a−1.

This is true for all a ∈ G. Hence by the above result G is an abelian group.

Problem 5. Prove that a group (G, ◦) is abelian if and only if (a ◦ b)−1 = a−1 ◦ b−1 for all

a, b ∈ G.
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Solution. Let us first assume that G is abelian. Then

(a ◦ b)−1 = (b ◦ a)−1 = a−−1 ◦ b−1

for all a, b ∈ G.

Conversely, let (a ◦ b)−1 = a−1 ◦ b−1 for all a, b ∈ G. We claim that G is abelian.

Let a, b ∈ G. Then (a ◦ b)−1 = a−1 ◦ b−1. Taking inverse of both side, we get(
(a ◦ b)−1

)−1
=
(
a−1 ◦ b−1

)−1

or, ab =
(
b−1
)−1 (

a−1
)−1

= ba.

This is true for all a, b ∈ G. Hence G is abelian.

Definition 19. Order of an element: Let G be a group and let a ∈ G. Then we say that

a has order n or a is of order n if n is the smallest positive integer such that an = e, e being

the identity element of G. We write o(a) = n to denote that the order of the element is n.

It is to be noted that o(e) = 1, e is the identity element of G.

It is very important to note that if an = e, then o(a) ≤ n.

However if there is no such positive integer exists, then we say that the order of the element

is infinite.

Example 20. Let us consider the set S of all cube roots of unity i.e., S = {1, ω, ω2}. Then

it is an easy exercise to show that (S, ·) is an abelian group. In this group, we have o(ω) =

3, o(ω2) = 3.

Example 21. In Example 2 we have shown that Z5 is an abelian under the addition modulo

5, in notation +5. In this group, o(1) = 5, o(2) = 5, o(3 = 5, 4 = 5.

If we consider the group (Z6,+6), then o(1) = 6, o(2) = 3, o(3) = 2, o(4) = 3, o(5) = 6.

Example 22. In Example 7, o(a) = o(b) = o(c) = 2.

Example 23. In Example 11, o(f1) = 3, o(f2) = 3, o(f3) = o(f4) = o(f5) = 2.

Example 24. In Example 9 (iii), order of all non-zero element is 2.

Example 25. In Example 1, order of all non-identity element is infinite.

Theorem 26. Let G be a group and let a ∈ G. Then the following statements hold good:

(i) o(a) = o(a−1).

(ii) if o(a) = n and am = e, then n divides m.

(iii) if o(a) = n, then the elements e, a, a2, · · · , an−1 are all distinct.

Proof. (i) Case 1: Let o(a) be finite and let o(a) = n. Then n is the smallest positive integer

such that an = e, where e is the identity element of G. Now,

(a−1)n = a−n = (an)−1 = e

which implies that o(a−1) ≤ n. If possible suppose that o(a−1) = k < n. Then (a−1)k = e

which implies that a−k = e. This implies that ak = e which is a contradiction to the

hypothesis. hence we must have o(a−1) = n = o(a).

Case 2: Let o(a) be infinite. We claim that o(a−1) is also infinite. If possible suppose

that o(a−1) = n. Then as before, we get an = e which contradicts our hypothesis. Hence our

claim is established.

(ii) Let o(a) = n and am = e. Then n is the smallest positive integer such that an = e, the

identity element of G. Then we must have n ≤ m and so by division algorithm, there exists

q, r ∈ Z such that

m = nq + r
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with 0 ≤ r < n. We claim that r = 0. If not, then 0 < r < n. Then

e = am = anq+r = (an)qar = ear = ar

which is contradiction to the fact that o(a) = n. Hence we must have r = 0 which yield that

m = nq. Hence n divides m.

(iii) Let o(a) = n. If possible, let the elements e, a, a2, · · · , an−1 are not all distinct. So we

have ar = as for some r, s with 0 ≤ r < s ≤ n− 1. This implies that

as−r = e

and 0 < s− r < n which is a contradiction to the hypothesis. Hence the result follows. □

Example 27. Let G be a group. Let a ∈ G be such that a2 = e. Then we have either (i)

a = e or (ii) o(a) = 2.

Example 28. Let G be a finite group. We claim that each element of G is of finite order.

Let a ∈ G. Then the elements e, a, a2, a3, · · · are all in G, by closure property. Since G is a

finite group, these elements cannot be distinct. So we must have ar = as for some integers r, s

with 0 ≤ r < s which implies that as−r = e and s− r is a positive integer. Hence o(a) ≤ s− r,

a finite number. This is true for all a ∈ G. Hence the result follows.

Note. However the converse of Example 28 may not hold in general. In Example 9(iii), we

have noted that each non-identity element is of order 2, but the group is of infinite order.

Again in Example 1, we have already noted that each non-zero element is of infinite order.

In this case the order of the group if also infinite.

Theorem 29. Let G be a group and a ∈ G. If o(a) = n, then o(ak) = n
gcd(k,n) .

Proof. Let o(a) = n. Then n is the smallest positive integer such that an = e, e being the

identity element of G. Now let o(ak) = m. Then amk = e. From Theorem 26 (ii) it follows

that n divides mk.

Let gcd(k, n) = d. Then we find two integers u, v with gcd(u, v) = 1 and k = du and

n = dv. Therefore

n|(mk) =⇒ (dv)|(mdu) =⇒ v|(mu) =⇒ v|m since gcd(u, v) = 1.

We claim that m|v. Note that

(ak)v = akv = aduv = anu = (an)u = e

which implies that m|v (applying again Theorem 26 (ii)). Hence we have m = v = n
d =

n
gcd(k,n) . Hence the theorem follows. □

Example 30. If b is an element of a group G and o(b) = 20, find the order of the element

(i) b6 (ii) b8 (iii) b15.

(i) Here o(b6) = 20
gcd(6,20) = 10.

(ii), (iii) are left as an exercise.

Example 31. Find the number of elements of order 10 in (Z30,+).

Note that o(1) = 30 in (Z30,+). Let o(k) = 10. Then by the above theorem,

o(k) = o(k1) =
30

gcd(k, 30)
.

So by hypothesis,

30

gcd(k, 30)
= 10 =⇒ gcd(k, 30) = 3 =⇒ gcd

(
k

3
, 10

)
= 1 =⇒ k

3
= 1, 3, 7, 9
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which implies that

k = 3, 9, 21, 27.

Hence number of elements of order 10 in (Z30,+) is 4 and are given by 3, 9, 21, 27.

Problem 6. Find the number of elements of order 5 in the group (i) (Z30,+) (ii) (Z20,+).

Example 32. Let G be a group and let a, b ∈ G. If o(a) = 3 and if aba−1 = b2, find o(b) if

b ̸= e,

Let o(a) = 3 and let aba−1 = b2. Then

(aba−1)(aba−1) = b4 =⇒ ab2a−1 = b4 =⇒ a(aba−1)a−1 = b4 =⇒ a2ba−2 = b4.

Now,

(a2ba−2)(a2ba−2) = b8 =⇒ a2b2a−2 = b8 =⇒ a2(aba−1)a−2 = b8 =⇒ b = b8

which implies that b7 = e. Hence o(b) = 7, since b ̸= e.

Definition 33. Let (G, ◦) be a group and H be a non-empty subset of G. If H itself form a

group with respect to the same composition as defined in G, then (H, ◦) is called a subgroup

of the group (G, ◦).

Example 34. Let (G, ◦) be a group and let e be the identity element of G. As G is a subset

of itself, it is a subgroup of (G, ◦). This subgroup of (G, ◦) is called the improper subgroup

of (G, ◦).
Also the singleton set {e} is a subgroup of (G, ◦). This subgroup ({e}, ◦) is called the trivial

subgroup of (G, ◦). Any other subgroups of (G, ◦) are called non-trivial proper subgroup of

(G, ◦).

Example 35. Note that (Q,+) is a group and Z is a non-empty subset of (Q,+). As (Z,+)

itselt forms a group, so by definition (Z,+) is a subgroup of (Q,+).

It is also to be noted that (Q \ {0}, ·) is a group and Q \ {0} is a non-empty subset of Q.

But (Q \ {0}, ·) is not a subgroup of (Q,+).

Theorem 36. Let (H, ◦) be a subgroup of (G, ◦). Then

(i) the identity element of (H, ◦) and (G, ◦) are the same.

(ii) if a ∈ H, then the inverse of a in (H, ◦) is the same as the inverse of a in (G, ◦).

Proof. (i) Let eH be the identity element of the group (G, ◦) and let eG be the same in (G, ◦).
Then for any h ∈ H, we have

eH ◦ h = h ◦ eH = h

As H ⊂ G, the element h is also in G and therefore

eG ◦ h = h ◦ eG = h.

Then

eH ◦ h = eG ◦ h =⇒ eH = eG

by right cancellation law.

(ii) Let a ∈ H. Let b and c be the inverse of a in (G, ◦) and (H, ◦) respectively. Then

a ◦ b = b ◦ a = eG

a ◦ c = c ◦ a = eH

But by (i), eG = eH and so a ◦ b = a ◦ c. Hence by cancellation law, we get b = c. □
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Theorem 37. Let (G, ◦) be a group and let H be a non-empty subset of G. Then H is a

subgroup of (G, ◦) if and only if (i) a, b ∈ H =⇒ a ◦ b ∈ H and (ii) a ∈ H =⇒ a−1 ∈ H.

Proof. Let us first suppose that (H, ◦) is a subgroup of (G, ◦). Then by definition (H, ◦) itself
form a group and the conditions (i) and (ii) are obviously satisfied.

Conversely, let the conditions hold good. Condition (i) guarantees that H is closed under

◦. Since associative property is a hereditary property and H ⊂ G, it is clearly satisfied in H

with respect to ◦.
Now, let a ∈ H. Then by (ii), a−1 ∈ H and therefore by (i), we have aa−1 = e ∈ H. This

shows that (H, ◦) is itself a group and hence by definition it is a subgroup of (G, ◦). □

Theorem 38. Let (G, ◦) be a group and let H be a non-empty subset of G. Then H is a

subgroup of (G, ◦) if and only if a, b ∈ H =⇒ a ◦ b−1 ∈ H.

Proof. Let us first suppose that (H, ◦) is a subgroup of (G, ◦). Then by definition (H, ◦) itself
form a group. Let a, b ∈ H. Then a, b−1 ∈ H and hence by closure property a ◦ b−1 ∈ H.

Conversely, let the condition holds i.e., for any a, b ∈ H =⇒ a ◦ b−1 ∈ H.

Let a ∈ H. Then a ◦ a−1 = e ∈ H. Therefore, H contains the identity element e.

Now for a ∈ H, we have e ◦a−1 = a−1 ∈ H. Therefore, inverse of each element exists in H.

Let a, b ∈ H. Then we have a, b−1 ∈ H and hence a ◦ b = a ◦ (a−1)−1 ∈ H. Therefore, ◦ is

closed in H.

Since H is a subset of G and ◦ is associative on G, it follows that ◦ is associative on H. □

Theorem 39. Let G be a group and H be a non-empty finite subset of G. Then H is subgroup

of G if and only if for any a, b ∈ H =⇒ ab ∈ H.

Proof. Let H be a subgroup of G. Then H is itself a group and hence the condition holds

good.

Conversely, let the condition holds.

Let a ∈ H. Then a, a2, a3, · · · are all in H. By hypothesis, H is a finite set. Therefore, the

elements a, a2, a3, · · · cannot be all distinct. So we must have

ar = as

for some positive integers r, s with r ≥ s. This yield that

ar−s = e

and hence e ∈ H. Note also that, since r − s ≥ 1, we have r − s− 1 ≥ 0. From this it follows

that

ar−s−1a = ar−s = aar−s−1 = e

and hence a−1 = ar−s−1 ∈ H. Also H satisfies closure and associative properties. Hence H

is a subgroup of G. □

Problem 7. Let H = {x ∈ C : x2021 = 1}. Prove that H is a subgroup of C \ {0} under

multiplication.

Solution. It is to be observed that o(H) = 2021 and that the group (C \ {0}, ·) is abelian.

Now let a, b ∈ H. Then a2021 = 1 and b2021 = 1 and therefore

(ab)2021 = a2021b2021 = 1

which implies that ab ∈ H. Hence by Theorem 39, we have H is a subgroup of (C \ {0}, ·).
Dr. Pratikshan Mondal, real.analysis77@gmail.com Study material

real.analysis77@gmail.com


Group Theory

Note. Theorem 39 need not be true if H is assumed to be an infinite set. For example, let

G = Z be the group with respect to addition. Let H = N. It is to be noted that H is closed

under addition but is not a subgroup of G.

Example 40. Let G be a group. Let us consider the set

H = {x ∈ G : xg = gx for all g ∈ G}.

Then clearly, H is non-empty as e ∈ G where e is the identity element of G. We claim that

H is a subgroup of G.

Let a, b ∈ H. Then ag = ga and bg = gb holds for all g ∈ G.

Now,

bg = gb =⇒ b−1(bg)b−1 = b−1gbb−1 =⇒ gb−1 = b−1g

for all g ∈ G. Therefore, for all g ∈ G, we have

(ab−1)g = a(b−1g)

= a(gb−1)

= (ag)b−1

= g(ab−1)

which implies that ab−1 ∈ H and consequently, H is a subgroup of G. The subgroup H is

called the centre of the group G and is denoted by Z(G).

For example, if we take G = V4, the Klein’s 4-group, then

Z(V4) = V4.

Now if we take G = S3, then Z(S3) = {e}.

Example 41. Let G be a group and let a ∈ G. Let us consider the set

H = {x ∈ G : xa = ax}.

We claim that H is a subgroup of G.

Let x, y ∈ H. Then ax = xa and ay = ya. Therefore, ay−1 = y−1a. Now,

a(xy−1) = (ax)y−1

= (xa)y−1

= x(ay−1)

= x(y−1a)

= (xy−1)a

which implies that xy−1 ∈ H. Hence H is a subgroup of G.

The subgroup H is called the centraliser of the element a and is denoted as C(a). It is

also obvious that Z(G) ⊂ C(a) and Z(G) is a subgroup of C(a).

Theorem 42. Let H and K be two subgroups of a group G. Then H ∩K is a subgroup of G.

Proof. It is clear that e ∈ H ∩K, e being the identity element of G and hence H ∩K ̸= ϕ.

Let a, b ∈ H ∩K. Then

a, b ∈ H ∩K =⇒ a, b ∈ H & a, b ∈ K

=⇒ ab−1 ∈ H & ab−1 ∈ K

=⇒ ab−1 ∈ H ∩K

which implies that H ∩K is a subgroup of G. □
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Note. The above theorem need not hold if you replace ∩ by ∪ i.e., the union of two subgroups

of a group need not be a subgroup of the group. For example, let us consider the Klein’s 4-group

V4 (See Example 7). Let us take H = {e, a} and K = {e, b}. Then H and K are two subgroups

of V4. But H ∪K = {e, a, b} is not a subgroup of V4, since a, b ∈ H ∪K but c = ab /∈ H ∪K.

However we have the following theorem:

Theorem 43. Let G be a group and let H,K be two subgroups of G. Then H ∪ K is a

subgroup of G if and only if either H ⊂ K or K ⊂ H.

Proof. Let us first suppose that H ∪ K be a subgroup of G. We have to prove that either

H ⊂ K or K ⊂ H. Suppose that our claim is not true. Then H ̸⊂ K and K ̸⊂ H. So there

is an element a ∈ K such that a /∈ H and another element b ∈ H but b /∈ K. Therefore,

a, b ∈ H ∪ K and since H ∪ K is a subgroup of G, we have ab ∈ H ∪ K. Then ab ∈ H or

ab ∈ K.

If ab ∈ H. Then b ∈ H and ab ∈ H implies that abb−1 = a ∈ H - a contradiction.

If ab ∈ K. Then a ∈ K and ab ∈ K implies that a−1ab = b ∈ K - a contradiction.

Therefore ab neither belongs to H nor to K and hence ab /∈ H ∪K - a contradiction. This

contradiction confirms that our assumption is wrong and hence we have either H ⊂ K or

K ⊂ H.

Conversely, let us suppose that either H ⊂ K or K ⊂ H. Then either H ∪ K = K or

H ∪K = H and hence in both the cases H ∪K is a subgroup of G. □

Problem 8. In a group G, a is the only element of a fixed order n. Then show that a ∈ Z(G).

Solution. Let o(a) = n. Let x ∈ G. Consider the element xax−1 ∈ G. We claim that

o(xax−1) = n. First note that

(xax−1)n = (xax−1)(xax−1) · · · (xax−1)

= xanx−1

= xex−1

= e

where e being the identity element of G. Therefore, o(xax−1) ≤ n. Let o(xax−1) = k < n.

Then

(xax−1)k = e =⇒ xakx−1 = e =⇒ ak = xx−1 = e

which is a contradiction to the fact that o(a) = n. Therefore we must have o(xax−1) = n.

Now by hypothesis, we have

xax−1 = a =⇒ xa = ax.

This is true for all x ∈ G. Hence a ∈ Z(G).

Problem 9. Let a and b be two elements in a group G. Show that o(ab) = o(ba).

Solution. It is to be noted from the above problem that o(a) = o(xax−1) for all x ∈ G. It is

also to be noted that

ab = b−1(ba)b = b−1(ba)(b−1)−1.

Hence o(ab) = o(ba).

Problem 10. Let G be an abelian group. Prove that the subset H = {g ∈ G : g = g−1} is a

subgroup of G.
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Solution. First note that e ∈ H as e = e−1 where e is the identity element of G. Therefore

H ̸= ϕ. Let x, y ∈ H. Then x = x−1 and y = y−1. Then xy−1 = x−1y = yx−1 = (xy−1)−1

and hence xy−1 ∈ H. This shows that H is a subgroup of G.

Problem 11. Let (G, ◦) be a group and (H, ◦) be a subgroup of (G, ◦). Let x, y ∈ G. Define

a relation ρ on G by “xρy if and only if x ◦ y−1 ∈ H”. Prove that ρ is an equivalence relation

on G.

Solution. Reflexive: Since x ◦ x−1 = e ∈ H for all x ∈ G, it follows that xρx holds for all

x ∈ G. Hence ρ is reflexive.

Symmetric: Let x, y ∈ G be such that xρy holds. Then x◦y−1 ∈ H. Since H is a subgroup

of G, we have y ◦ x−1 = (x ◦ y−1)−1 ∈ H. This yields that yρx. Hence ρ is symmetric.

Transitive: Let x, y, z ∈ G be such that xρy and yρz. Then x ◦ y−1 ∈ H and y ◦ z−1 ∈ H

and therefore, x ◦ z−1 = (x ◦ y−1) ◦ (y ◦ z−1) ∈ H. This implies that xρz and hence ρ is

transitive. Consequently, ρ is an equivalence relation on G.

Problem 12. Let (G, ◦) be a group and H be a non-empty subset of G. A relation ρ defined

on G by “aρb if and only if a ◦ b−1 ∈ H for a, b ∈ G, is an equivalence relation on G. Prove

that (H, ◦) is a subgroup of (G, ◦).

Solution. Let a ∈ H. Then a ∈ G and since ρ is reflexive, aρa holds. That is e = a◦a−1 ∈ H.

This shows that H contains identity element.

Let a, b ∈ H so that a, b ∈ G. Since a = a ◦ e−1 ∈ H and b = b ◦ e−1 ∈ H, it follows that

aρe and bρe holds. Since ρ is symmetric, we have eρb holds. Then by transitivity of ρ, we get

aρb holds i.e., a ◦ b−1 ∈ H. This proves that H is a subgroup of G.

Problem 13. Let G be a group. Show that Z(G) =
⋂
a∈G

C(a).

Solution. We have already noted that Z(G) ⊂ C(a) for all a ∈ G and hence Z(G) ⊂
⋂
a∈G

C(a).

Now, let x ∈
⋂
a∈G

C(a). Then x ∈ C(a) for all a ∈ G and hence ax = xa for all a ∈ G. This

implies that x ∈ Z(G) and the result follows.

Problem 14. Let G be a group and let a ∈ G. Prove that C(a) = C(a−1).

Solution. Let x ∈ C(a). Then ax = xa which implies that xa−1 = a−1x. Therefore,

x ∈ C(a−1) and hence C(a) ⊂ C(a−1). Converse part is similar.

Problem 15. Suppose that a group contains elements a, b such that o(a) = 4, o(b) = 2 and

a3b = ba. Find o(ab).

Solution. Note that

(ab)2 = abab = a(ba)b = a(a3b)b = a4b2 = e

which implies that o(ab) = 1 or 2. But o(ab) = 1 implies that ab = e =⇒ a = b−1 = b -

impossible. Hence o(ab) = 2.

Problem 16. Consider the elements A =

(
0 −1

1 0

)
and B =

(
0 1

−1 −1

)
from SL(2,R).

Find o(A), o(B) and o(AB). Is the result surprising?

Solution. It can be shown that o(A) = 4, o(B) = 3 but o(AB) = ∞.

Problem 17. Suppose a is an element in a group G such that o(a) = 5. Prove that C(a) =

C(a3).
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Solution. We first show that C(a) ⊂ C(a3). For this, let x ∈ C(a). Then ax = xa and

therefore

a3x = a2xa = a(ax)a = a(xa)a = (ax)a2 = (xa)a2 = xa3

which shows that x ∈ C(a3). So, C(a) ⊂ C(a3).

For the reverse inclusion, observe that a6 = a. Let y ∈ C(a3) and then

ya = ya6 = (ya3)a3 = a3(ya3) = a3(a3y) = a6y = ay

which implies that y ∈ C(a) and consequently, C(a3) ⊂ C(a). Hence the result follows.

Definition 44. Let (G, ◦) be a group. If there is an element a ∈ G such that each element

b ∈ G can be expressed as b = an (or, in additive notation na) for some n ∈ Z, then a is said

to be a generator of the group (G, ◦). In this case we write G = ⟨a⟩ = {an : n ∈ Z} (or,

{na : n ∈ Z}) and read as a generates the group G.

Example 45. Let us consider the group (Z,+) (See Example 1). Note that 1 is a generator

of the group and therefore Z = ⟨1⟩. It is also to be noted that −1 is also a generator of Z. It

can also be easily checked that Z has only two generators.

Example 46. Let us now consider Klein’s 4-group V4 (See Example 7). No element of V4

generates the group.

Definition 47. Cyclic group: A group (G, ◦) is said to be a cyclic group if it is generated

by an element a ∈ G. In this case we write G = ⟨a⟩.

Theorem 48. If a is a generator of a cyclic group G, then so is a−1.

Proof. Let G = ⟨a⟩. We claim that G = ⟨a−1⟩. Since a−1 ∈ G, it is clear from closure property

that

⟨a−1⟩ ⊂ G.

Let x ∈ G. Then x ∈ ⟨a⟩ and therefore x = an for some n ∈ Z. Note that x = an =

(a−1)−n ∈ ⟨a−1⟩, since −n ∈ Z. This implies that G ⊂ ⟨a−1⟩. Hence G = ⟨a−1⟩ and the

theorem follows. □

Note. If a group G has only one generator, say a, then we must have a = a−1. This implies

that a2 = e. Hence we have either G = {e} or G = {e, a}.

Theorem 49. Every cyclic group is abelian.

Proof. Let G be a cyclic group generated by a i.e., G = ⟨a⟩. Let x, y ∈ G. Then x = ar and

y = as for some r, s ∈ Z. Then

xy = aras = ar+s = as+r = asar = yx.

This is true for all x, y ∈ G. Hence the result follows. □

Note. However the converse of the above theorem need not be true i.e., an abelian group is

not necessarily cyclic. For example, Kleins 4-group V4 (Example 7) is abelian but not cyclic.

We now prove the following theorems which has a broad application:

Theorem 50. Let G be a finite cyclic group generated by a. Then o(G) = n if and only if

o(a) = n.
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Proof. Let us first suppose that o(G) = n. We claim that o(a) = n.

Since a ∈ G, we have e, a, a2, · · · are elements ofG. SinceG is finite, the elements e, a, a2, · · ·
cannot be distinct. So we have ar = as for some r, s ∈ Z with r > s. This implies that ar−s = e

and hence o(a) is finite. Let o(a) = k. Then by Theorem 26 (iii), the elements e, a, a2, · · · , ak−1

are all distinct.

Let H = {e, a, a2, · · · , ak−1}. It is clear that H ⊂ G. Now let x ∈ G. Then x = am for

some m ∈ Z. Therefore by division algorithm, there are integers q, r such that m = kq + r

where 0 ≤ r < k. Now,

x = am = akq+r = (ak)qar = ear = ar.

Since 0 ≤ r < k and x = ar, it follows that x ∈ H. Hence G ⊂ H and consequently, G = H.

Since o(G) = n, it follows that k = n and hence o(a) = k = n.

Conversely, let o(a) = n. We claim that o(G) = n. By hypothesis, G = ⟨a⟩. In a similar

way, it can be shown that

G = {e, a, a2, · · · , an−1}.

Hence o(G) = n. □

Theorem 51. Let G be a cyclic group generated by a. Then G is infinite if and only if o(a)

is infinite.

Proof. Apply above theorem. □

Theorem 52. A finite group G of order n is cyclic if and only if there is an element b ∈ G

such that o(b) = n.

Proof. Let G be a cyclic group of order n. Then there is an element a ∈ G such that G = ⟨a⟩.
Then by Theorem 50, it follows that o(a) = n. Taking b = a, the result follows.

Conversely, suppose that G is a finite group of order n and there exists an element b ∈ G

such that o(b) = n. Then by Theorem 26 (iii), the elements e, b, b2, · · · , bn−1 are all distinct.

Also e, b, b2, · · · , bn−1 are all in G. Since o(G) = n and e, b, b2, · · · , bn−1 are all distinct

elements of G, it follows that G = {e, b, b2, · · · , bn−1}. We claim that G = {bn : n ∈ Z}. It is
obvious that G ⊂ {bn : n ∈ Z}.

Since b ∈ G, it follows that e, b, b2, · · · are all in G i.e., {bn : n ∈ Z} ⊂ G and hence G = ⟨b⟩.
This completes the proof. □

Theorem 53. Let G = ⟨a⟩ of order n > 1. Then for a positive integer r, ar is also a generator

of G if and only if r is less than n and prime to n.

Proof. By hypothesis, G = {e, a, a2, · · · , an−1}. Let ar be a generator of the group G for

some positive integer r ∈ {1, 2, · · · , n− 1}. Then by Theorem 50, o(ar) = n = o(a). Also by

Theorem 29, we have

o(ar) =
o(a)

gcd(r, n)
.

Hence gcd(r, n) = 1 which implies that r is less than n and prime to n.

Conversely, suppose that r is less than n and prime to n. Then for r ∈ {1, 2, · · · , n − 1},
we have

o(ar) =
o(a)

gcd(r, n)
= o(a) = n.

Hence by Theorem 52, it follows that ar is also a generator of G. □

Let us recall the Euler’s ϕ function defined on N. We have ϕ(1) = 1 and ϕ(n) equals to the

number of positive integers less than n and prime to n. For example, ϕ(4) = 2 etc. From the

above theorem, we have the following important result:
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Corollary 54. Number of generators of a finite cyclic group of order n is ϕ(n).

Theorem 55. Every subgroup of cyclic group is cyclic.

Proof. Let G be a cyclic group generated by a and H be a subgroup of G. We claim that H

is a cyclic group.

If H = G or H = {e} where e is the identity element of G, then there is nothing to prove.

So let us suppose that H a non-trivial proper subgroup of G.

Let x ∈ H. Then x ∈ G and so x = am for some integer m. Since H is a subgroup of

G, we have x−1 = a−m ∈ H. Since either m or −m is a positive integer, it follows that H

contains an element which is a positive power of a. Then by well ordering property, let m be

the smallest positive integer such that am ∈ H. We claim that H is a cyclic group generated

by am i.e, H = ⟨am⟩.
Since am ∈ H, it follows that ⟨am⟩ ⊂ H. For the reverse inclusion, let x ∈ H. Then x ∈ G

and hence x = ap for some integer p. Now by division algorithm, there are integers q, r such

that

p = mq + r

where 0 ≤ r < m. We claim that r = 0. If not, then 0 < r < m and therefore

ar = ap−mq = apa−mq

which implies that ar ∈ H and 0 < r < m - a contradiction to the fact that am is the smallest

positive integer such that am ∈ H. Hence our claim that r = 0 is true. Then p = mq and so

x = ap = amq = (am)q ∈ ⟨am⟩.

This shows that H ⊂ ⟨am⟩ and hence H = ⟨am⟩. This completes the proof. □

Let us now take an example to see that every proper subgroup of a group is cyclic but the

group is not cyclic.

Example 56. Let G = V4 (see Example 7). It is to be noted that every proper subgroup of G

is cyclic. But G is not cyclic.

Theorem 57. A cyclic group of prime order has no non-trivial proper subgroup.

Proof. Let G be a cyclic group of prime order p generated by a. Let H be a subgroup of G.

Then H is also a cyclic group. Let H = ⟨am⟩ where m is smallest positive integer such that

am ∈ H. Note that ap = e ∈ H where e is the identity element of G. Then proceeding as

in Theorem 55 we can show that p = mq for some some q ∈ Z. This shows that m divides p

which implies that m = 1 or p. If m = 1, then H = {e} and if m = p, then H = G. Hence

the theorem. □

Theorem 58. A cyclic group of order n has exactly one subgroup of order d for each positive

divisor d of n.

Proof. Let G = ⟨a⟩ and let o(G) = n. Then o(a) = n and G = {e, a, a2, · · · , an−1}.
Note that the trivial subgroup {e} is the only subgroup of order 1, where e is the identity

element of G. Also G itself is the only subgroup of order n. Let us now take a positive divisor

d of n such that 1 < d < n. Then there is a positive integer q such that n = dq. Then

1 < q < n. Note that aq ∈ G and o(aq) = n
gcd(q,n) =

n
q = d. Let H = ⟨aq⟩. Then H is a cyclic

subgroup of G of order d.
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We now show that H is the only subgroup of G of order d. On the contrary, let us suppose

that K be another subgroup of G of order d. Then K = ⟨ap⟩ for some p ∈ Z and therefore

o(ap) = d. Note also that

o(ap) =
n

gcd(p, n)
=⇒ gcd(p, n) =

n

d
= q.

Then p = sq for some s ∈ N. Therefore, ap = asq = (aq)s ∈ ⟨aq⟩ = H. Hence K = ⟨ap⟩ ⊂ H.

Since o(H) = o(K) = d, it follows that H = K and the proof is complete. □

Problem 18. If G be a cyclic group of prime order p, prove that every non-identity element

of G is a generator of G.

Solution. Let G = ⟨a⟩ be a cyclic group of prime order p. Let ar, 1 ≤ r < p be a non-identity

element of G. Then

o(ar) =
o(a)

gcd(r, p)
= o(a) = p = o(G).

Hence ar is a generator of G. Hence the result follows.

Example 59. Find all generators of Z22.

Solution. First note that o(Z22) = 22 and Z22 = ⟨1⟩. An element m ∈ Z22 is a generator of

Z22 if and only if o(m) = 22. Now if m is a generator of Z22, then

o(m) =
o(1)

gcd(m, 22)
=⇒ gcd(m, 22) = 1 =⇒ m = 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21.

Hence 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 are the generators of Z22.

Example 60. Let G = ⟨a⟩ be a cyclic group such that o(a) = 16. Find all the generators of

the subgroup of order 8.

Solution. First recall that G has exactly one subgroup H of order 8, since 8|16. Since G is

cyclic, H is also cyclic. Note that

o(a2) =
o(a)

gcd(2, 16)
=

16

2
= 8.

Hence we can assume that H = ⟨a2⟩.
Now, let (a2)m is another generator of H. Then o((a2)m) = 8 which implies that

o(a2)

gcd(m, 8)
= 8 =⇒ gcd(m, 8) = 1 =⇒ m = 1, 3, 5, 7.

Hence a2, a6, a10, a14 are the only generators of H.

Note. Let G = ⟨a⟩. Let r, s ∈ N. Then H = ⟨ar⟩∩⟨as⟩ is a subgroup of G and H = ⟨alcm(r,s)⟩.

Example 61. Describe the subgroup 8Z ∩ 12Z.

Solution. It is clear that 8Z = ⟨8⟩ and 12Z = ⟨12⟩. Then by the above note 8Z ∩ 12Z =

⟨lcm(8, 12)⟩ = ⟨24⟩.

Example 62. Let G = ⟨a⟩. Let H be the smallest subgroup of G that contains am and an.

Prove that H = ⟨agcd(m,n)⟩.

Solution. Let d = gcd(m,n). Since G is cyclic, it follows that H is also cyclic. Let k be the

smallest positive integer such that H = ⟨ak⟩. Then k|m and k|n and therefore k|gcd(m,n) = d.

Thus ad ∈ H and so ⟨ad⟩ ⊂ H.

Also d|m and d|n. Therefore, am ∈ ⟨ad⟩ and an ∈ ⟨ad⟩. Since H is the smallest subgroup

of G that contains both am, an, it follows that ⟨ad⟩ ⊂ H. Hence we have H = ⟨ad⟩.
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Problem 19. Let G = ⟨a⟩. Find the smallest subgroup of G containing a8 and a12.

Solution. By the previous example, the smallest subgroup containing a8 and a12 is given by

⟨agcd(8,12)⟩ = ⟨a4⟩.

Problem 20. Find the smallest subgroup containing 32 and 40.

Solution. Recall that Z = ⟨1⟩. Then the smallest subgroup containing 32 and 40 is given by

⟨gcd(32, 40)⟩ = ⟨8⟩.

Problem 21. Let G be a group and a ∈ G. If o(a) = n, then show that o(ak) = o(an−k),

1 ≤ k ≤ n.

Problem 22. Let G = ⟨a⟩. Suppose that G has a non-trivial finite subgroup. Prove that G is

a finite group.

Solution. Let H ̸= {e} be a finite subgroup of G, where e is the identity element of G. Note

that H is cyclic. So there exists a smallest positive integer m such that H = ⟨am⟩. Since

o(H) is finite, let o(H) = k. Then (am)k = e and therefore amk = e which implies that o(a)

is finite. Since o(G) = o(a), it follows that o(G) is finite and the result follows.

Problem 23. Let G = ⟨a⟩ be an infinite cyclic group. Prove that G has only two generators

a and a−1.

Solution. Let b be a generator of G = ⟨a⟩ i.e., G = ⟨b⟩. Then b ∈ ⟨a⟩ and so b = am for

some m ∈ Z. Again, since a ∈ ⟨b⟩, we have a = bk for some k ∈ Z. Therefore,

a = bk = (am)k = amk.

Since a is of infinite order, it follows that mk = 1 and hence we have m = k = 1 or m = k =

−1. Hence we have b = a or b = a−1.

Problem 24. Give an example of an infinite group G such that G has a non-trivial finite

subgroup H.

Solution. Let us consider the group G = (C− {0}, ·) i.e., the group of all non-zero complex

numbers under multiplication. Then G is an infinite group.

Now, let H = {x ∈ C − {0} : x3 = 1}. Then H ⊂ G is a group under multiplication of

order 3 and hence a finite subgroup of G.

Problem 25. Let G be a non-trivial group with no non-trivial proper subgroup. Prove that

G is finite group of prime order.

Solution. Let a be a non-identity element of G. Then ⟨a⟩ is a non-trivial subgroup of G.

Then by hypothesis, we have G = ⟨a⟩ i,e., G is a cyclic group generated by a.

Now we claim that o(G) is finite. If o(G) is infinite, then ⟨a2⟩ is a non-trivial proper

subgroups of G - a contradiction. Hence o(G) must be finite. Finally, we claim that o(G) is

a prime. If not, then o(G) = mn for some positive integers m,n such that m,n ̸= 1. Since

G is cyclic and m|mn, it follows from Theorem 58 that G has a subgroup of order m - a

contradiction. Hence o(G) is a prime number.

Problem 26. In a group G, the elements a and b commute and gcd(o(a), o(b)) = 1. Show

that o(ab) = o(a) · o(b).
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Solution. Let o(a) = m and o(b) = n. Let o(ab) = k. Then we have am = bn = (ab)k = e,

where k is the identity element of G. Now

(ab)mn = amnbmn

= ee = e

which implies that k|mn.

Now

(ab)k = e =⇒ akbk = e

=⇒ ak = b−k

=⇒ ank = b−nk = e

which implies that m|nk. Since gcd(m,n) = 1, it follows that m|k.
Also

(ab)k = e =⇒ akbk = e

=⇒ bk = a−k

=⇒ bmk = a−mk = e

which implies that n|mk. Since gcd(m,n) = 1, it follows that n|k.
Therefore mn|k and consequently, mn = k. Hence o(ab) = k = mn = o(a) · o(b).

Problem 27. If G be a finite group of even order, then prove that G has atleast one element

of order 2.

Solution. Let G be a finite group of even order. We know that e, the identity element of G,

is the only element of order 1. Let us consider the set S = {a ∈ G : a ̸= a−1}. If S = ϕ, then

all the non-identity elements of G are of order 2 and we are done.

Suppose that S ̸= ϕ. Then observe that if a ∈ S, then a−1 ∈ S also. This shows that S

contains an even number of elements. Note that e /∈ S. Then S ∪{e} contains an odd number

of elements of G and hence is a proper subset of G. This implies that there exists atleast one

element a ∈ G such that a /∈ S ∪ {e}. Hence a ̸= e and a = a−1 i.e., a ̸= e and a2 = e. This

shows that a is an element of order 2. Hence the result follows.

Problem 28. If an abelian group G of order 10 contains an element of order 5, prove that G

must be a cyclic group.

Solution. Since G is a group of even order, it follows from Exercise 27 that G has an element,

say a, of order 2. By hypothesis, G has an element b of order 5. Then gcd(o(a), o(b)) = 1.

Since G is abelian, we have ab = ba. Hence from Exercise 26, it follow that o(ab) = o(a)·o(b) =
10. This shows that G has an element ab of order 10. Thus, by Theorem 52, G is a cyclic

group.

Problem 29. Let G be a cyclic group of order 30 generated by a. Find the subgroup H of G

of order 6. Find the generators of H.

Solution. Note that o(a) = 30. Now,

o(a5) =
o(a)

gcd(5, 30)
=

30

5
= 6.

Dr. Pratikshan Mondal, real.analysis77@gmail.com Study material

real.analysis77@gmail.com


Group Theory

Hence a5 is an element of G of order 6. Then H = ⟨a5⟩ is a subgroup of G of order 6. Let

(a5)k be a generator of H. Then

o((a5)k) =
o(a5)

gcd(k, 6)
=⇒ 6 =

6

gcd(k, 6)
=⇒ gcd(k, 6) = 1.

Therefore, k = 1, 5. Hence the generators of H are a5 and a25.

Definition 63. Left Cosets: Let G be a group and H be a subgroup of G. Then for any

a ∈ G, the set aH = {ah : h ∈ H} is called the left coset of H in G. Similarly, the set

Ha = {ha : h ∈ H} is called the right coset of H in G.

Example 64. Let G = S3 and let H = {f0, f4} (see Example 11). Then the left cosets are

f0H = H

f3H = {f3, f3f4} = {f3, f1} = f1H

f4H = H

f5H = {f5, f5f4} = {f5, f2} = f2H.

Therefore the distinct left cosets of H in G are H = {f0, f4}, f1H = {f1, f3}, f2H = {f2, f5}.
It is to be noted that H ∪ f1H ∪ f2H = S3.

We now find all the right cosets of H in G.

Hf0 = H

Hf3 = {f3, f4f3} = {f3, f2} = Hf2

Hf4 = H

Hf5 = {f5, f4f5} = {f5, f1} = Hf1.

Therefore the distinct right cosets of H in G are H = {f0, f4}, Hf1 = {f1, f5}, Hf2 = {f2, f3}.
It is to be noted that H ∪Hf1 ∪Hf2 = S3.

It is to be noted that f1H ̸= Hf1 and f2H ̸= f2H. It is also very important to note that

the set of all distinct left cosets
{
{f0, f4}, {f1, f3}, {f2, f5}

}
is different from the set of all

distinct right cosets
{
{f0, f4}, {f1, f5}, {f2, f3}

}
.

Now let us take another subgroup K = {f0, f1, f2}. Find all the left cosets as well as all

the right cosets of K in G. Find if there is same distinction as in the previous one.

Example 65. Let us consider the group G = V4 (see Example 7). Let H = {e, a}. Then the

left cosets of H in G are

eH = aH = H

bH = {b, c} = cH

Therefore the set of all distinct left cosets of H in G are H, bH. Note that H ∪ bH = V4.

Theorem 66. Let G be a group and let H be a subgroup of G. Then the following statements

hold good:

(a) hH = H if and only if h ∈ H.

(b) If a ∈ G−H, then H ∩ aH = ϕ.

(c) If a, b ∈ G, then either aH = bH or aH ∩ bH = ϕ.

(d) For a, b ∈ G, aH = bH if and only if a−1b ∈ H.

(e) Any two left cosets of H in G have the same cardinality.

(f) The relation defined on G by “aρb if and only if a−1b ∈ H” for a, b ∈ G is an

equivalence relation.
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Proof. (a) Let hH = H. Then h = he ∈ hH = H.

Conversely, let h ∈ H. We claim that hH = H. Let x ∈ hH. Then x = hh′ for some

h′ ∈ H. Since both h, h′ ∈ H, it follows that x = hh′ ∈ H. Hence hH ⊂ H.

Let y ∈ H. Since H is itself a group, so by Theorem 17 there exists an element h1 ∈ H

such that hh1 = y. This implies that y = hh1 ∈ hH and therefore, H ⊂ hH. Hence we have

hH = H.

(b) If possible, suppose that H ∩ aH ̸= ϕ. Let x ∈ H ∩ aH. Then x ∈ H and x ∈ aH.

So there exists h ∈ H such that x = ah which implies that a = xh−1 ∈ H - a contradiction.

Hence the result follows.

(c) Let a, b ∈ G. Then aH and bH are two left cosets of H in G. Therefore, aH ∩ bh ̸= ϕ

or aH ∩ bH = ϕ.

Let aH ∩ bH ̸= ϕ. Let x ∈ aH = bH. So there exist elements h1, h2 ∈ H such that x = ah1

and x = bh2. Then ah1 = bh2 which yields that a = bh2h
−1
1 and b = ah1h

−1
2 . We claim that

aH = bH.

Let p ∈ aH. Then for some h3 ∈ H, we have

p = ah3 = bh2h
−1
1 h3 = bh4

where h4 = h2h
−1
1 h3 ∈ H. This implies that p ∈ bH and therefore aH ⊂ bH.

Now let q ∈ bH. Then there exists h6 ∈ H such that q = bh6. Then

q = bh6 = ah1h
−1
2 h6 = ah7

where h7 = h1h
−1
2 h6 ∈ H. This shows that bH ⊂ aH. Hence aH = bH.

(d) Let aH = bH. Then b = be ∈ bH = aH and so there is h ∈ H such that b = ah.

Therefore, a−1b = h ∈ H.

Conversely, let a−1b ∈ H. Then a−1b = h′ for some h′ ∈ H and so b = ah′ ∈ aH. Since

b = be ∈ bH, it follows that b ∈ aH ∩ bH ̸= ϕ. Hence by part (c), aH = bH.

(e) Let aH and bH be two left cosets of H in G. Define a mapping f : aH → bH by

f(ah) = bh

for all ah ∈ aH. We show that f is bijective.

Let f(ah1) = f(ah2) for ah1, ah2 ∈ aH. Then bh1 = bh2 which implies that h1 = h2 =⇒
ah1 = ah2. Hence f is injective.

Let bh ∈ bH. Then by definition of the mapping, we get f(ah) = bh and ah ∈ aH. Hence f

is surjective and consequently, f is bijective. Therefore aH and bH have the same cardinality.

(f) Reflexive: For any a ∈ G, we have a−1a = e ∈ H. Therefore aρa holds for all a ∈ G.

So ρ is reflexive.

Symmetric: Let a, b ∈ G be such that aρb holds. Then a−1b ∈ H. Since H is a group,

(a−1b)−1 ∈ H i.e., b−1a ∈ H which implies that bρa holds. Therefore ρ is symmetric.

Transitive: Let a, b, c ∈ G be such that aρb and bρc holds. Then a−1b ∈ H and b−1c ∈ H

and therefore

a−1c = (a−1b)(b−1c) ∈ H.

This shows that aρc holds and therefore ρ is transitive. Hence ρ is an equivalence relation. □

Note. Let us now find the equivalence class of an element a ∈ G under the equivalence relation

defined in (f).

cl(a) = {x ∈ G : aρx}

= {x ∈ G : a−1x ∈ H}

= {x ∈ G : x ∈ aH} = aH.
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This shows that cl(a) = aH for all a ∈ G. Since the set of all equivalence classes defines a

partition of the set, it follows that the set of all distinct left cosets of H in G forms a partition

of G,

Note. All the above properties established for left cosets are also true for right cosets and can

be established in a similar way and hence can be left as an exercise.

Now we are in a position to prove the famous Lagrange’s theorem on groups.

Theorem 67. Order of every subgroup of a finite group divides the order of the group.

Proof. Let G be a finite group and let H be a subgroup of G. Let o(G) = n. Then the number

of distinct left cosets of H in G is also finite. Let aH , aH , · · · , akH deonte the distinct left

cosets of H in G. Then by the above note, {aH , aH , · · · , akH} form a partition of G i.e.,

G =

k⋃
i=1

aiH and aiH ∩ ajH = ϕ for all i, j with i ̸= j. This implies that

o(G) =

k∑
i=1

o(aiH).

By Theorem 66 (e), o(aiH) = o(ajH) for all i, j with i ̸= j. Since H is itself a left coset of H

in G, it follows that o(aiH) = o(H) for all i = 1, 2, · · · , k. Hence

o(G) =

k∑
i=1

o(H) = k · o(H)

which implies that o(H) divides o(G). □

Note. From the above theorem, we see that o(G) = k · o(H) and therefore o(G)
o(H) = k =the

number of distinct left cosets of H in G. The number of distinct left cosets of H in G is called

the index of H in G and is denoted by [G : H]. Hence by Lagrange’s theorem, we see that for

a finite group G

[G : H] = k =
o(G)

o(H)
.

There are a large number of important result which follows from Lagrange’s theorem. Here

we present a few of them.

Theorem 68. A group G of prime order p is cyclic.

Proof. Let a ∈ G be a non-identity element of G. Consider H = ⟨a⟩. Then H is a subgroup

of G with o(H) > 1. By Lagrange’s theorem, we have o(H)|o(G) = p. Since p is a prime

and o(H) > 1, we must have o(H) = p. Again since H ⊂ G and o(H) = o(G), we have

G = H = ⟨a⟩. Hence G is a cyclic group generated by a. □

Note. From the proof of the above theorem, it follows that every non-identity element of G is

a generator of G and hence number of generator of a group of prime order p is p− 1.

Theorem 69. Let G be a finite group and let a ∈ G. Then o(a)|o(G). Hence ao(G) = e,

where e is the identity element of G.

Proof. Let H = ⟨a⟩. Then H is a subgroup of G and o(H) = o(a). Then by Lagrange’s

theorem, o(H)|o(G) i.e., o(a)|o(G).

For the last part, let o(a) = m i.e., am = e. Since m|o(G), we have o(G) = mk for some

k ∈ Z. Hence

ao(G) = amk = (am)k = e.

□
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In view of the above theorem, it seems to happen that in an infinite group all the elements

are of infinite order. However this is not true in general. There are infinite groups each element

of which has finite order (see Example 9). The following problem provides another example

of an infinite group having the same property.

Problem 30. Let S =
⋃
n∈N

{x ∈ C : xn = 1} = {x ∈ C : xn = 1, n ∈ N}. Show that S is an

infinite group under the usual multiplication of complex numbers in which each element has

finite order.

Theorem 70. If p be a prime and a be an integer such that p is not a divisor of a, then

ap−1 ≡ 1(mod p).

Proof. Let us first choose a ∈ {1, 2, · · · , p − 1}. Consider the group (Zp − {0}, ·p) where ·p
denotes the multiplication modulo p. Note that o(Zp − {0}) = p− 1 and a ∈ Zp − {0}. Then
(a)p−1 = 1, 1 being the identity element of Zp − {0}. This implies that ap−1 ≡ 1(mod p).

We now take take a ∈ {1, 2, · · · , p − 1}c i.e., a is a negative integer or a positive integer

greater than p. Then by division algorithm, there are integers q, r such that a = pq + r with

0 ≤ r < p which implies that a ≡ r(mod p). Hence a = r. Since 1 ≤ r < p, it follows from

above that rp−1 ≡ 1(mod p). Since a = r, it follows that ap−1 ≡ 1(mod p). □

However the converse of the Lagrnage’s theorem may not be true i.e., if G be a group of

finite order and if d|o(G), there G may not have a subgroup of order d.

Example 71. Let us look at the following table. The following table represents the Cayley

table for the Alternating group A4 having 12 elements say, α1 = (1), α2 = (12)(34), α3 =

(13)(24), α4 = (14)(23), α5 = (123), α6 = (243), α7 = (142), α8 = (134), α9 = (132), α10 =

(143), α11 = (234), α12 = (124).

◦ α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12

α1 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12

α2 α2 α1 α4 α3 α6 α5 α8 α7 α10 α9 α12 α11

α3 α3 α4 α1 α2 α7 α8 α5 α6 α11 α12 α9 α10

α4 α4 α3 α2 α1 α8 α7 α6 α5 α12 α11 α10 α9

α5 α5 α8 α6 α7 α9 α12 α10 α11 α1 α4 α2 α3

α6 α6 α7 α5 α8 α10 α11 α9 α12 α2 α3 α1 α4

α7 α7 α6 α8 α5 α11 α10 α12 α9 α3 α2 α4 α1

α8 α8 α5 α7 α6 α12 α9 α11 α10 α4 α1 α3 α2

α9 α9 α11 α12 α10 α1 α3 α4 α2 α5 α7 α8 α6

α10 α10 α12 α11 α9 α2 α4 α3 α1 α6 α8 α7 α5

α11 α11 α9 α10 α12 α3 α1 α2 α4 α7 α5 α6 α8

α12 α12 α10 α9 α11 α4 α2 α1 α3 α8 α6 α5 α7
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From the above table, we see that A4 contains 8 elements of order 3 and are α5, · · · , α12. We

claim that A4 has no subgroup of order 6. Let H be a subgroup of A4 of order 6. Let a be an

element in A4 of order 3. Since [A4 : H] = 2, the left cosets H, aH, a2H cannot be all distinct.

Now H = aH implies that a ∈ H. If aH = a2H, then a2H = a3H = H. Therefore, in rest of

the cases, we have a2H = H and therefore, H = a3H = aH which again implies that a ∈ H.

Hence in case we find the a ∈ H. Since a was taken arbitrarily from A4, it follows that H

contains all the 8 elements of A4-which is a contradiction. Hence A4 does not have a subgroup

of order 6.

Problem 31. Prove that every group of order < 6 is commutative.

Solution. If G be a group of order 1, then G = {e}, where e is the identity element of G.

Then G = ⟨e⟩ and hence commutative.

If o(G) = 2, 3, 5, then G is a group of prime order and hence cyclic by Theorem 68. Then

by theorem 49, G is commutative.

Now let G be a group of order 4. Then the order of the elements of G are 1, 2 or 4. If G

has an element of order 4, then G is a cyclic group and hence commutative.

Let G has no element of order 4. Then all the non-identity element of G has order 2. Let

a, b ∈ G. Then ab ∈ G. Therefore, o(a) = o(b) = o(ab) = 2 and so a = a−1, b = b−1 and

ab = (ab)−1 = b−1a−1 = ba. This is true for all a, b ∈ G. Hence G is commutative.

Example 72. Let H be a normal subgroup of a group G. Let G/H denote the set of all left

(or right) cosets of H in G i.e., G/H = {aH : a ∈ G}. We show that G/H forms a group

under the operation aH ◦ bH = abH.

Before that, we first show that the operation ◦ : G/H × G/H → G/H is well defined.

For this, let (aH, bH), (a′H, b′H) ∈ G/H × G/H be such that (aH, bH) = (a′H, b′H). Then

aH = a′H and bH = b′H. Then a = a′h1 and b = b′h2 for some h1, h2 ∈ H. We claim that

abH = a′b′H.

aH ◦ bH = abH = a′h1b
′h2H

= a′h1b
′H

= a′h1Hb′

= a′Hb′

= a′b′H = a′H ◦ b′H

Hence the binary operation ◦ is well-defined. It is easy to see that eH is the identity element

in G/H and a−1H is the inverse of aH ∈ G/H. Rest of the properties are easy to verify.

Hence (G/H, ◦) is a group. This group is called the factor group or quotient group.

In addition, if G is commutative, then the quotient group G/H is commutative and if

G = ⟨a⟩ is a cyclic group generated by a, then G/H = ⟨aH⟩ is also a cyclic group. But

the converse is not true. For example, consider G = S3 and H = {f0, f1, f2}. Then H is a

normal subgroup of G. Note that o (G/H) = o(G)
o(H) = 2 and hence G/H is cyclic as well as

commutative, but S3 is neither cyclic nor commutative.

Problem 32. Let P and Q are subgroups of a group G such that o(o(P ), o(Q)) = 1. Prove

that P ∩Q = {e}.

Solution. Note that P ∩ Q is a subgroup of P and Q. Then o(P ∩ Q)|o(P ) as well as

o(P ∩Q)|o(Q). This implies that o(P ∩Q) = 1 and hence P ∩Q = {e}.
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Problem 33. Let G be a group of order pq where p and q are distinct primes. Prove that

every proper subgroup of G is cyclic.

Problem 34. Prove that a non-commutative group of order 10 must have a subgroup of order

5.

Solution. Let G be a group of order 10. Then the order of elements of G are 1, 2, 5, or 10.

Since G is non-commutative, G cannot have an element of order 10.

If possible suppose that G has no element of order 5. Then all the non-identity elements of

G are of order 2.

Let a, b ∈ G. Then ab ∈ G. By hypothesis, o(a) = o(b) = o(ab) = 2 which implies that

a = a−1, b = b−1 and

ab = (ab)−1 = b−1a−1 = ba.

This shows that G is commutative - a contradiction. Hence we must have an element in G of

order 5.

Problem 35. Prove that a group of order 27 must have a subgroup of order 3.

Solution. Let G be a group of order 27. Then the order of the elements of G are 1, 3, 9, or

27. If G has an element of order 27, then G is a cyclic group and hence by Theorem 58, G

has a subgroup of order 3 as 3|27.
If G has an element of order 9, say a, then o(a3) = 3 and hence H = ⟨a3⟩ is a subgroup of

order 3.

If G contains an element of order 3, then H = ⟨a⟩ is a subgroup of G of order 3.

Thus, in any of the above cases, G has a subgroup of order 3.

Problem 36. Prove that a non-abelian group of order 8 must have an element of order 4.

Problem 37. Let G be a group of order 15 and let A,B be two subgroups of G of order 3, 5

respectively. Prove that G = AB.

Solution. It is to be noted that A∩B = {e}. Then o(A∩B) = o(A)·o(B)
o(A∩B) = 3·5

1 = 15. Therefore

AB ⊂ G and o(AB) = o(G). This implies that G = AB.

Problem 38. Prove that the total number of subgroups of a finite cyclic group of order n is

the number of positive divisors of n.

Solution. Let G be a cyclic group of order n. Then all the subgroups of G are also cyclic.

Hence G has only cyclic subgroups. By Theorem 58, for each positive divisor d of n G has a

unique subgroup of order d. Hence the total number of subgroups of a finite cyclic group of

order n is the number of positive divisors of n.

Problem 39. Let H and K be two subgroups of a group G such that o(H) = o(K) = p where

p is a prime. Show that H ∩K = {e}.
Deduce that if G has exactly m distinct subgroups of prime order p, then the total number

of elements of order p is m(p− 1).

Problem 40. Let G be a cyclic group of order 12 generated by a and H be the subgroup of

G generated by a4. Show that the distinct left cosets of H in G are H, aH, a2H, a3H. Verify

that H ∪ a2H is a also a subgroup of G.

Problem 41. Let G be an infinite cyclic group generated by a i.e., G = ⟨a⟩ and let H be

the subgroup generated by as i.e., H = ⟨as⟩, where s is a positive integers > 1. Prove that

H, aH, a2H, · · · , as−1H is a complete list of distinct left cosets of H in G.
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Problem 42. Suppose that G is an abelian group with an odd number of elements. Show that

the product of all of the elements of G is the identity.

Solution. Since o(G) is odd, therefore G cannot have any element of order 2. Thus, each

non-identity element x of G has an inverse with x ̸= x−1. So we can write the elements of

G as e, a1, a
−1
1 , a2, a

−1
2 , · · · , an, a−1

n and hence the product of all these elements must be e, the

identity element of G.

Problem 43. Let o(G) = pq, where p, q are distinct primes. If G has only one subgroup of

order p and only one subgroup of order q, then prove that G is cyclic.

Solution. Let H be the subgroup of G of order p and let K be the subgroup of G order q. Then

H ∪K has p+q−1 < pq elements. Let a ∈ G be such that a /∈ H ∪K. By Lagrange’s theorem

o(a) = p, q, or pq. If o(a) = p, then ⟨a⟩ is a subgroup of G of order p and by hypothesis,

H = ⟨a⟩. This implies that a ∈ H - a contradiction. In a similar way, o(a) ̸= q. Hence we

must have o(a) = pq and consequently, G is a cyclic group.

Problem 44. Let G be a group of order 25. Prove that G is cyclic or g5 = e for all g ∈ G,

where e is the identity element of G.

Problem 45. Let G be a group of order 33. Show that G has an element of order 3.

Solution. The possible orders of the elements of G are 1, 3, 11, or 33. If there is an element

x ∈ G such that o(x) = 33, then o(x11) = 3 and we are done. Suppose that there is no element

of G of order 33. Then every non-identity element of G has order 3 or 11. Now note that

number of elements of order 11 in G is a multiple of ϕ(11) = 10 i.e., there 0, 10, 20, or 30

elements of order 11. Since identity element is of order 1, we have found atmost 31 elements

of G. Hence we must have an element of order 3.

We have already noted that for some subgroups of a group, left cosets and right cosets

coincide and for some subgroups this is not true.

Definition 73. Normal subgroup: A subgroup H of a group G is said to be a normal

subgroup of G if aH = Ha for all a ∈ G. In this case write H∆G.

It is very easy to verify that the trivial subgroup and the improper subgroup of a group

are normal subgroups.

Theorem 74. Every subgroup of a commutative group is normal.

Proof. Let G be a commutative group and let H be a subgroup of G. Let a ∈ H. Then, since

ab = ba for all a, b ∈ G, we have

aH = {ah : h ∈ H} = {ha : h ∈ H} = Ha

which implies that H∆G. □

Example 75. Let G be a group and let H be a subgroup of G such that [G : H] = 2. Prove

that H∆G.

Proof. Since [G : H] = 2, there are two distinct left cosets as well as two distinct right cosets.

Let x ∈ G. If x ∈ H, then xH = H = Hx. Now let x ∈ G−H. Then xH is a left coset other

than H and Hx is a right coset other than H. Hence we must have xH = Hx. Hence the

result follows. □

Theorem 76. Test for normality: Let H be a subgroup of G. Then H∆G if and only if

for any g ∈ G and h ∈ H, we have ghg−1 ∈ H.
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Proof. Let us first suppose that H∆G. Then gH = Hg for all g ∈ G.

Let x ∈ G and h ∈ H. Then xh ∈ xH = Hx. So there exists h′ ∈ H such that

xh = h′x =⇒ xhx−1 = h′ ∈ H.

Conversely, let for any g ∈ G and for any h ∈ H, we have ghg−1 ∈ H. We show that H∆G.

Let g ∈ G. Let x ∈ gH. Then for some h1 ∈ H, we have

x = gh1 = gh1g
−1g ∈ Hg

as gh1g
−1 ∈ H. This implies that gH ⊂ Hg.

Now, let y ∈ Hg. So there exists y = h2g for some h2 ∈ H. Now

y = h2g = gg−1h2g = gg−1h2(g
−1)−1 ∈ gH

as g−1 ∈ G and g−1h2(g
−1)−1 ∈ H. This shows that Hg ⊂ gH. Consequently, gH = Hg.

This is true for all g ∈ G. Hence H∆G. □

Note. The above theorem can also be viewed as:

H∆G if and only if gHg−1 ⊂ H for all g ∈ G.

Example 77. Let G be a group. Then Z(G)∆G.

We apply the above theorem to prove this.

Let g ∈ G and h ∈ Z(G). Then

ghg−1 = gg−1h = h ∈ Z(G)

which implies that ghg−1 ∈ Z(G) for all g ∈ G. Hence Z(G)∆G.

Theorem 78. Intersection of two normal subgroups of a group G is also a normal subgroup

of G.

Proof. Let H and K be two normal subgroups of a group G. We claim that H∩K be a normal

subgroup of G. We have already proved that H ∩K is a subgroup of G (see Theorem 42).

Now, let g ∈ G and h ∈ H ∩ K. Then h ∈ H and h ∈ K. Therefore, ghg−1 ∈ H and

ghg−1 ∈ K. Hence ghg−1 ∈ H ∩K and therefore, H ∩K is a normal subgroup of G. □

Problem 46. Let H be a subgroup of a group G and [G : H] = 2. Prove that x2 ∈ H for all

x ∈ G. Deduce that A4 has no subgroup of order 6.

Solution. By hypothesis, H∆G. Therefore the quotient group G/H exists and is of order 2

i.e., o(G/H) = 2. Now for any x ∈ G, we have (xH)2 = H, the identity element of G/H

which implies that x2H = H =⇒ x2 ∈ H. Hence the first part follows.

For the second part, Let H be a subgroup of G = A4 of order 6. Then [G : H] = 2. Then

by first part, we have x2 ∈ H for all x ∈ G = A4.

Now note that A4 has 12 elements of which α1 is the identity element (see Example 71).

Also

α2
1 = α2

2 = α2
3 = α2

4 = α1.

α2
5 = α9, α

2
6 = α11, α

2
7 = α12, α

2
8 = α10, α

2
9 = α5, α

2
10 = α8, α

2
11 = α6, α

2
12 = α7.

Hence there are more than 6 squares belongs to H - a contradiction to the fact that o(H) = 6.

Hence G = A4 cannot have a subgroup of order 6.

Readers are requested to compare the following result with the Example 64.

Problem 47. Let H be a subgroup of a group G such that every left coset of H is also a right

coset of H in G. Prove that H∆G.
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Solution. Let a ∈ G. Then by hypothesis, there exists an element b ∈ G such that aH = Hb.

Note that a = ae ∈ aH = Hb. Also a = ea ∈ Ha. Therefore, a ∈ Ha ∩Hb. Since any two

right cosets are either disjoint or equal, we get Ha = Hb = aH. This is true for all a ∈ G

and hence H∆G.

Problem 48. Let H be a subgroup of a group G such that the product of any two left cosets

of H is a left coset of H. Prove that H∆G.

Solution. Let a ∈ G. Then by hypothesis, there exists b ∈ G such that aHa−1H = bH. Now,

e = aea−1e ∈ aHa−1H = bH. So there exists an element h ∈ H such that e = bh which

implies that b = h−1 ∈ H. Hence we have aHa−1H = H and therefore,

aHa−1 ⊂ aHa−1H = H.

This proves that H∆G.

Problem 49. Let G = GL(2,R) and let H be the group of all 2× 2 real orthogonal matrices.

Prove that H is not a normal subgroup of G.

Solution. Let A =

(
3 2

0 1

)
∈ G and let B =

(
1 0

0 −1

)
∈ H. Then BT =

(
1 0

0 −1

)
and

BBT =

(
1 0

0 −1

)(
1 0

0 −1

)
=

(
1 0

0 1

)

which shows that B is orthogonal and so B ∈ H. Also note that A−1 = 1
3

(
1 −2

0 3

)
. Now,

ABA−1 =
1

3

(
3 2

0 1

)(
1 0

0 −1

)(
1 −2

0 3

)

=
1

3

(
3 2

0 1

)(
1 −2

0 −3

)

=

(
1 −4

0 −1

)
= C say.

Then CT =

(
1 0

−4 −1

)
and therefore,

CCT =

(
1 −4

0 −1

)(
1 0

−4 −1

)
=

(
17 4

4 1

)
and therefore C is not orthogonal matrix and hence ABA−1 /∈ H. This proves that H is not

a normal subgroup of G.

Problem 50. Let M and N be two normal subgroups of a group G such that M ∩N = {e}.
Prove that mn = nm for all m ∈ M and for all n ∈ N .

Solution. Let m ∈ M and n ∈ N . Since N∆G, we have mnm−1 ∈ N and therefore,

mnm−1n−1 ∈ N . Again, since M∆G, we have nm−1n−1 ∈ M . Since m ∈ M , we have

mnm−1n−1 ∈ M . This shows that mnm−1n−1 ∈ M ∩N = {e}. Therefore,

mnm−1n−1 = e =⇒ mn(nm)−1 = e =⇒ mn = nm.

This is true for all m ∈ M and for all n ∈ N .

Problem 51. Let G be a group and a ∈ G in which (ab)3 = a3b3 for all a, b ∈ G. Prove that

H = {x3 : x ∈ G} is a normal subgroup of G.
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Solution. Let a, b ∈ H. Then there exists p, q ∈ G such that a = p3, y = q3. Then

ab−1 = p3q−3 = (pq−1)3 by hypothesis.

Since pq−1 ∈ G, then (pq−1)3 = ab−1 ∈ H, it follows that H is a subgroup of G.

Now let g ∈ G. Then

gag−1 = gp3g−1 = (gpg−1)3

and since gpg−1 ∈ G, it follows that gag−1 ∈ H. This is true for all g ∈ G and for all a ∈ H.

Hence H∆G.

Problem 52. Let G be a group and a ∈ G. Prove ⟨a⟩ is a normal subgroup of C(a).

Solution. Let g ∈ C(a) and let h ∈ ⟨a⟩. Then h = am for some m ∈ Z. Then

ghg−1 = gamg−1 = gg−1am = am ∈ ⟨a⟩

which shows that ⟨a⟩ is a normal subgroup of C(a).

Problem 53. Let G be a group of order 8 and let x be an element of G of order 4. Prove

that x2 ∈ Z(G).

Solution. Let H = ⟨x⟩ = {e, x, x2, x3}. Let g ∈ G. Consider the element gx2g−1. Then

o(gx2g−1) = o(x2) = 2.

Now note that H∆G. Then gx2g−1 ∈ H. It is also to be noted that x2 is the only element

of H of order 2. Hence we must have

gx2g−1 = x2 =⇒ gx2 = x2g.

This is true for all g ∈ G. Hence x2 ∈ Z(G).

Problem 54. If every cyclic subgroup of a group G is normal in G, prove that every subgroup

of G is normal in G.

Solution. Let every cyclic subgroup of a group G be normal in G. Let H be a subgroup of G.

Let h ∈ H. Then h ∈ G. Then by hypothesis, ⟨h⟩ is normal in G as it is a cyclic subgroup of

G. Then for any g ∈ G, we have ghg−1 ∈ ⟨a⟩ ⊂ H. Hence H∆G.

Example 79. Let G be a group. If H is the only subgroup of G of a fixed order, then H∆G.

Solution. Let H be a subgroup of G and let o(H) = n. Let g ∈ G. Consider the set

gHg−1 = {ghg−1 : h ∈ H}. Clearly, gHg−1 ̸= ϕ as e = geg−1 ∈ gHg−1.

Let gh1g
−1, gh2g

−1 ∈ gHg−1. Then

gh1g
−1(gh2g

−1)−1 = gh1g
−1gh−1

2 g−1 = gh1h
−1
2 g−1 ∈ gHg−1

as h1h
−1
2 ∈ H. Hence gHg−1 is a subgroup of G.

We claim that o(gHg−1) = o(H). Define a mapping f : H → gHg−1 by f(h) = ghg−1 for

all h ∈ H. Let h1, h2 ∈ H. Then

f(h1) = f(h2)

⇐⇒ gh1g
−1 = gh2g

−1

⇐⇒ h1 = h2.

This shows that f is well defined and injective. Definition of f clearly shows that f is surjective

and hence f is bijective. Consequently, o(H) = o(gHg−1. Then by hypothesis, gHg−1 = H

which implies that gH = Hg. This is true for all g ∈ G. Hence H∆G.

Problem 55. Prove that every subgroup of Q8 is normal (see Example 5).
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Solution. Let H be a subgroup of Q8. Then o(H) = 1, 2, 4, or 8.

If o(H) = 1, then H = {e} and H∆G.

If o(H) = 8, then H = G and H∆G.

If o(H) = 4, then [G : H] = 2 and hence by Example 75, H∆G.

Now, let o(H) = 2. Then H is cyclic and must be generated by an element of Q8 of order

2. Note that Q8 has only one element, say −1, of order 2. Hence H is the only subgroup of

Q8 of order 2. Hence by Example 79, we have H∆G.

Problem 56. Let G be a non-commutative group of order 2p, p being an odd prime. Prove

that there exists atleast one element of order p in G. If o(a) = p, prove that ⟨a⟩ is normal in

G.

Problem 57. Let H be a normal subgroup of a group G such that o(H) = 3 and [G : H] = 10.

If a ∈ G and o(a) = 3, prove that a ∈ H.

Solution. Since [G : H] = 10 it follows that o(G/H) = 10. Let a ∈ G be such that o(a) = 3.

Note that aH ∈ G/H. Since o(G/H) = 10, we have

(aH)10 = H =⇒ a10H = H =⇒ aH = H =⇒ a ∈ H.

Problem 58. Let G be a group and let H be a subgroup of G. If x2 ∈ H for all x ∈ G, then

prove that H∆G.

Solution. Let x2 ∈ H for all x ∈ G. Let g ∈ G and h ∈ H. Then

ghg−1 = ghghh−1g−1g−1 = (gh)2h−1(g−1)−1.

Since g ∈ G, h ∈ H ⊂ G, we have gh ∈ G and hence by hypothesis, (gh)2 ∈ H. Again g−1 ∈ G

and by the same property we have (g−1)2 ∈ H. Hence ghg−1 ∈ H and therefore H∆G.

Theorem 80. Let G be a group and let Z(G) be the centre of the group. If G/Z(G) is cyclic,

then G is commutative.

Solution. Let G/Z(G) be cyclic and let gZ(G) be a generator of G/Z(G). We claim that G

is commutative.

Let a, b ∈ G. Then there exists integers i, j such that aZ(G) = (gZ(G))i = giZ(G) and

bZ(G) = (gZ(G))j = gjZ(G). So there exists x, y ∈ Z(G) such that a = gix and b = gjy.

Now,

ab = (gix)(gjy) = gi(xgj)y = gigj(xy) = gigj(yx) = gj(giy)x = (gjy)(gix) = ba.

This is true for all a, b ∈ G. Hence G is commutative.

Note. The contrapositive statement of the above theorem is as follows:

“if G is non-commutative, then G/Z(G) is not cyclic.”

Problem 59. Prove that a non-abelian group of order 10 must have a trivial centre.

Solution. Let G be a group of order 10. Then o(Z(G)) = 1, 2, 5, or 10. Since G is non-

abelian, so G ̸= Z(G) and hence o(Z(G)) ̸= 10.

Let o(Z(G)) = 5. Then o(G/Z(G)) = o(G)
o(Z(G)) = 2 and therefore, G/Z(G) is a cyclic group.

Hence by Theorem 80, we have G is commutative - a contradiction. Thus, o(Z(G)) ̸= 5.

In a similar way o(Z(G)) ̸= 2. Hence we have only o(Z(G)) = 1 which shows that Z(G) =

{e}. Hence the result follows.

Example 81. Prove that Z(S3) = {e}.
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Solution. Note that o(Z(S3)) = 1, 2, or 3.

If o(Z(S3)) = 2, then o(S3/Z(S3)) = 3, a prime number. Therefore, S3/Z(S3) is cyclic

and hence by Theore 80, S3 is commutative - a contradiction.

If o(Z(S3)) = 3, then o(S3/Z(S3)) = 2, a prime number. Therefore, S3/Z(S3) is cyclic

and hence again by Theore 80, S3 is commutative - a contradiction.

We have only one possibility and therefore o(Z(S3)) = 1 and the result follows.

Problem 60. Find the order of 5 + ⟨6⟩ in the quotient group Z18/⟨6⟩.

Solution. Let G = Z18 and let H = ⟨6⟩ = {0, 6, 12}. Then o(H) = 3 since o(6) = 3. Then

G/H = {0+H, 1+H, 2+H, 3+H, 4+H, 5+H}. Then it is easy to verify that (5+H) = 6.

Problem 61. Let G be a finite group and H∆G. Prove that for each g ∈ G, the order of the

element gH ∈ G/H divides o(g).

Solution. Let g ∈ G be such that o(g) = k. Now, let o(gH) = n. We claim that n|k. Now

(gH)k == gkH = H.

Then by Theorem 26(ii), we have n|k i.e., o(gH)|o(g).

Problem 62. Suppose that G is a non-abelian group of order p3, p being a prime number.

Prove that o(Z(G)) = 1 or p.

Solution. Note that o(Z(G)) = 1, p, p2, or p3.

If o(Z(G)) = p3, then G = Z(G) which is impossible.

If o(Z(G)) = p2, then o(G/Z(G)) = p3

p2 = p and hence G/Z(G) is a cyclic group. Then by

Theorem 80, we have G is commutative - a contradiction.

Hence we have o(Z(G)) = 1 or p.

Definition 82. Simple group: A group G is said to be a simple group if it has no non-trivial

proper normal subgroup.

For example, a group of prime order is simple, as it has no non-trivial proper subgroups

and no non-trivial proper normal subgroups.

Example 83. Let G be a group and H∆G. Define N(H) = {x ∈ G : xHx−1 = H}. We

claim that N(H) is a subgroup of G.

Let a, b ∈ N(H). Then aHa−1 = H and bHb−1 = H =⇒ b−1Hb = H. Then

(ab−1H(ab−1)−1 = a(b−1Hb)a−1 = aHa−1 = H

which implies that ab−1 ∈ N(H). Hence N(H) is a subgroup of G.

Definition 84. Normaliser of a subgroup: Let G be a group and H∆G. Then the subgroup

N(H) = {x ∈ G : xHx−1 = H} is called the normaliser of H in G.

Problem 63. Let G be a group and H be a subgroup of G. Prove that

(a) H∆N(H).

(b) H∆G if and only if N(H) = G.

(c) N(H) is the largest subgroup of G in which H is normal i.e., if H∆K, where K is a

subgroup of G, then K ⊂ N(H).

Solution. (a) Let g ∈ N(H) and h ∈ H. Then gHg−1 = H. We claim that ghg−1 ∈ H.

This is trivially true from the definition i.e., ghg−1 ∈ gHg−1 = H. Hence H∆G.

(b) If N(H) = G, then from part (a), it follows that H∆G.
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Conversely, let H∆G. Then for all g ∈ G, we have gH = Hg i.e., gHg−1 = H which

implies that g ∈ N(H). Therefore, G ⊂ N(H).

It is clear that N(H) ⊂ G. Thus G = N(H).

(c) Let K be a subgroup of G such that H∆K. Then for all k ∈ K, we have kH = Hk

which implies that k ∈ N(H). This shows that K ⊂ N(H). Hence the result follows.

Definition 85. Let G be a group. Let a ∈ G. An element b ∈ G is said to be a conjugate

of a if there exists an element c ∈ G such that b = cac−1.

Example 86. Conjugacy relation in a group: Let G be a group. Define a relation ρ on

G by : for a, b ∈ G, aρb if and only if b is a conjugate of a. Then ρ is an equivalence relation

on G.

Reflexive: For any g ∈ G, g = ege−1. Thus for all g ∈ G, g is a conjugate of g.

Symmetry: Let a, b ∈ G be such that aρb. Then there exists an element c ∈ G such that

b = cac−1. This implies that a = c−1bc which implies that bρa.

Transitive: Let a, b, c ∈ G be such that aρb and bρc. So there exists x, y ∈ G such that

b = xax−1 and c = yby−1. This implies that c = yxax−1y−1 = (yx)a(yx)−1. Since xy ∈ G,

it follows that cρa.

Hence ρ is an equivalence relation on G. This relation on G is called conjugacy relation

or conjugacy on G.

Definition 87. Conjugacy class: The equivalence class of an element a in G with respect to

the above equivalence relation is called the conjugacy class of a and is denoted by [a]. Therefore,

b ∈ [a] if and only if there is an element c ∈ G such that b = cac−1 i.e., the elements of [a]

are of the form cac−1 for c ∈ G.

Theorem 88. The number of conjugates of a is equal to the index of C(a) in G i.e., o([a]) =

[G : C(a)].

Proof. Let a ∈ G. Let F denote the set of all distinct left cosets of C(a) in G. Then

o(F) = [G : C(a)]. Note that bab−1 ∈ [a] for all b ∈ G. We now define a mapping f : F → [a]

by f(bC(a)) = bab−1 for all bC(a) ∈ F . We show that f is an well defined bijective mapping.

Let b, c ∈ G. Then

bC(a) = cC(a)

⇐⇒ c−1b ∈ C(a)

⇐⇒ (c−1b)a = a(c−1b)

⇐⇒ bab−1 = cac−1.

Therefore f is an well defined injective mapping. It is obvious that f is surjective and hence

bijective. Consequently, o([a]) = o(F) = [G : C(a)]. □

Theorem 89. Let G be a finite group. Then

o(G) =
∑
a

[G : C(a)]

where the summation is over a complete set of distinct conjugacy class representatives.

Proof. From Example 86, it follows that G =
⋃

a[a], where the union runs over a complete set

of distinct conjugacy class representatives. Since the distinct conjugacy classes are mutually

disjoint, we have

o(G) =
∑
a

o([a]) =
∑
a

[G : C(a)]

by Theorem 88. □
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Problem 64. Let G be a group and a ∈ G. Prove that a ∈ Z(G) if and only if C(a) = G.

Solution. First, let a ∈ Z(G). We always have C(a) ⊂ G. Now for any g ∈ G, we have

ga = ag which implies that g ∈ C(a) and therefore G ⊂ C(a). Hence C(a) = G.

Conversely, let C(a) = G. Let g ∈ G. Then g ∈ C(a) and so ga = ag. This is true for all

g ∈ G. Hence a ∈ Z(G).

Theorem 90. Let G be a finite group. Then

o(G) = o(Z(G)) +
∑

a/∈Z(G)

[G : C(a)]

where Z(G) denotes the centre of G and the summation runs over a complete set of distinct

conjugacy class representatives, which do not belongs to Z(G).

Proof. We have from Problem 67, a ∈ Z(G) ⇐⇒ G = C(a) ⇐⇒ [G : C(a)] = 1. Therefore

o(Z(G)) =
∑

a∈Z(G)

[G : C(a)].

We have from Theorem 89 that

o(G) =
∑
a

[G : C(a)]

where the summation is over a complete set of distinct conjugacy class representatives. This

implies that

o(G) =
∑

a∈Z(G)

[G : C(a)] +
∑

a/∈Z(G)

[G : C(a)] = o(Z(G)) +
∑

a/∈Z(G)

[G : C(a)]

where the summation runs over a complete set of distinct conjugacy class representatives,

which do not belongs to Z(G). □

Note. For a finite group G, the equation

o(G) =
∑

a∈Z(G)

[G : C(a)] +
∑

a/∈Z(G)

[G : C(a)] = o(Z(G)) +
∑

a/∈Z(G)

[G : C(a)]

where the summation runs over a complete set of distinct conjugacy class representatives,

which do not belongs to Z(G) is called the (conjugacy) class equation. Let us now an

example.

Example 91. Let us take G = S3. Note that Z(S3) =

{(
1 2 3

1 2 3

)}
i.e.,

{(
1 2 3

1 2 3

)}
is self-conjugate.

Now,

(
1 2 3

2 1 3

)(
1 2 3

3 1 2

)(
1 2 3

2 1 3

)−1

=

(
1 2 3

3 2 1

)(
1 2 3

2 1 3

)
=

(
1 2 3

2 3 1

)

which implies that

(
1 2 3

2 3 1

)
is conjugate to

(
1 2 3

3 1 2

)
. Since order of an element and its

conjugates are the same, no element of order 2 is conjugate to an element of order 3. Hence[(
1 2 3

2 3 1

)]
=

{(
1 2 3

2 3 1

)
,

(
1 2 3

3 1 2

)}
.

In a similar way, we have another conjugacy class{(
1 2 3

2 1 3

)
,

(
1 2 3

1 3 2

)
,

(
1 2 3

3 2 1

)}
.

Then S3 has three conjugacy classes

{(
1 2 3

1 2 3

)}
,

{(
1 2 3

2 3 1

)
,

(
1 2 3

3 1 2

)}
and{(

1 2 3

2 1 3

)
,

(
1 2 3

1 3 2

)
,

(
1 2 3

3 2 1

)}
.
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Therefore the class equation is given by

o(S3) = o(Z(G)) +

[
S3 : C(

(
1 2 3

2 3 1

)
)

]
+

[
S3 : C(

(
1 2 3

2 1 3

)
)

]
6 = 1 + 2 + 3.

Problem 65. Let G be a finite group and a ∈ G be such that a has only two conjugates.

Prove that C(a) is a normal subgroup of G.

Solution. From Theorem 88, we have [G : C(a)] = o([a]). By hypothesis, o([a]) = 2. Hence

[G : C(a)] = 2 and hence by Example 75 we have C(a) is a normal subgroup of G.

Problem 66. Let G be a finite group that has only two conjugate classes. Show that o(G) = 2.

Solution. Let o(G) = n. Let a ∈ G be such that a ̸= e. Then G = [e] ∪ [a]. Since o([e]) = 1,

o([a]) = n − 1. Hence, n − 1 = o([a]) = [G : C(a)] divides o(G) = n. This is possible only if

n− 1 = 1 =⇒ n = 2.

Problem 67. Let G be a group and a ∈ G. Prove that a ∈ Z(G) if and only if [a] = {a}.

Solution. Let a ∈ Z(G). Then ag = ga for all g ∈ G. Therefore, gag−1 = a for all g ∈ G

which implies that [a] = {a}.
Conversely, suppose that [a] = {a}. Then gag−1 = a for all g ∈ G and so ga = ag for all

g ∈ G. This implies that a ∈ Z(G).

Theorem 92. If G be a group of order p2, where p is a prime then G is abelian.

Proof. By Lagrange’s theorem, o(Z(G))|o(G). Then Since o(G) = p2, we have o(Z(G)) > 1.

So we have o(Z(G)) = p, or p2.

Let o(Z(G)) = p. Then o(G/Z(G)) = p and so G/Z(G) is a cyclic group. Then by

Theorem 80, we have G is commutative.

Let o(Z(G)) = p2. Then Z(G) = G and hence G is commutative. □

Problem 68. Find the conjugacy classes in Q8 and write down the class equation.

Solution. We have Q8 = {±1,±I,±J,±K}. It is to be noted that Z(Q8) = {−1, 1}. Observe

that for any x ∈ Q8,

(−x)y(−x)−1 = −1 · x · y(−1 · x)−1

= −1 · x · y · x−1 · −1

= xyx−1

It can be shown that [I] = {−I, I}, [J ] = {−J, J}, [K] = {−K,K}. Hence the class equation

of Q8 is

o(Q8) = o(Z(Q8)) + [Q8 : C(I)] + [Q8 : C(J)] + [Q8 : C(K)]

8 = 2 + 2 + 2 + 2.

Problem 69. Find the conjugacy classes in D4 and write down the class equation.

Note. To find the conjugacy classes of S3, we first construct the Cayley table as follows:

Let a, b ∈ S3 be such that o(a) = 3 and o(b) = 2. Then it can be easily shown that
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· e a a2 b ab a2b

e e a a2 b ab a2b

a a a2 e ab a2b b

a2 a2 e a a2b b ab

b b e

ab ab e

a2b a2b a2 e

Let us now fill up the empty cells. For, the element ba, we have one of the following

possibilities:

ba = a or, ba = a2 or, ba = ab or, ba = a2b.

It is clear that ba ̸= a, ba ̸= a2. If ba = ab, then bab = ab2 = a and therefore, abab = a2 which

implies that

a2 = (ab)2 = e

- a contradiction. Hence we must have ba = a2b.

For the element ba2, we have

ba2 = a or, ba2 = a2 or, ba2 = ab.

It is also clear that ba2 ̸= a and ba2 ̸= a2. Hence we must have ba2 = ab.

For the element bab, we have only two possibilities

bab = a or, bab = a2.

If bab = a, then abab = a2 - a contradiction as shown earlier. So we have bab = a2.

Finally, for the element ba2b has only one possibility i.e., ba2b = a.

We now find out the elements related to the element ab. Note that

aba = a(a2b) = b, aba2 = a(ab) = a2b, abb = a, ab(a2b) = a(ab)b = a2.

Similarly, the elements of the last row will be as follows:

a2ba = a2(a2b) = ab, a2ba2 = a2(ab) = b, a2b(ab) = a2(a2) = a.

Hence the complete table will be looked like as follows:
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· e a a2 b ab a2b

e e a a2 b ab a2b

a a a2 e ab a2b b

a2 a2 e a a2b b ab

b b a2b ab e a2 a

ab ab b a2b a e a2

a2b a2b ab b a2 a e

We now find out the complete list of distinct conjugacy classes:

[e] = {eee−1, aea−1, a2e(a2)−1, beb−1, abe(ab)−1, a2be(a2b)−1}

= {e}.

[a] = {eae−1, aaa−1, a2a(a2)−1, bab−1, aba(ab)−1, a2ba(a2b)−1}

= {a, a, a, bab, aba2b, a2ba3b}

= {a, a, a, a2bb, a(ab)b, a2bb}

= {a, a, a, a2, a2, a2}

= {a, a2} = [a2].

[b] = {ebe−1, aba−1, a2b(a2)−1, bbb−1, abb(ab)−1, a2bb(a2b)−1}

= {b, aba2, a2ba, b, a(ab), a2(a2b)}

= {b, a(ab), a2(a2b), b, a2b, ab}

= {b, a2b, ab, b, a2b, ab}

= {b, ab, a2b} = [ab] = [a2b].

Hence from Problem 67, it follows that Z(S3) = {e}. Therefore, the class equation for S3

is given by

o(S3) = o(Z(G)) +
∑

a/∈Z(G)

o([a]) = 1 + o([a]) + o([b]) = 1 + 2 + 3.
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