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MULTIVARIATE STATISTICS
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1 Slope Aspect Altitude{mt) Grass cover (%) Grass Height{mm) Herb Cover(%) Herb Height{mm) Hahitat type Lt Depth{imm) Fock cove Barren(%) Cut tree  Lop[=
2 30 MWy 3170 0 0 15 2 Oak- Fir- Rh 30 0 85 0
3 45 W 3356 45 35 34 23 Oak- Fir- Eh 50 30 -10 2
4 30 SWY 3344 50 60 25 10 Edge 35 0 25 0
5 30 W 3433 B0 50 30 15 Edge 20 0 10 0
6 30 W 3433 B0 50 30 15 Edge 20 0 10 0
7 30 MWy 3360 40 40 50 30 Alpine 5 0 10 0
g 30 MY 3170 0 0 15 g Oak- Fir- Rh 30 0 85 0
9 15 W 3258 10 40 20 18 Oak- Fir- Rh 35 0 il 1
10 30 W 3450 B5 50 35 25 Alpine 0 0 0 0
11 30 W 3433 B0 50 30 15 Edge 20 0 10 0
12 15 W 3258 10 40 20 18 Oak- Fir- Rh 35 0 T 1
13 30 MY 3500 60 157 30 35 Alpine 0 10 0 0
14 30 MY 3500 64 140 25 35 Alpine 0 0 10 0
15 30 MWy 3500 7o 120 20 40 Alpine 0 0 10 0
16 30 MWV 3450 B5 130 25 45 Alpine 0 10 0 0
17 30 MWy 3450 B5 74 25 35 Alpine 0 0 10 0
18 30 MY 3450 45 45 30 30 Alpine 0 0 25 0
19 30 MY 3400 54 75 20 30 Alpine 0 0 25 0
20 30 MY 3400 B5 120 25 45 Alpine 0 10 0 0
21 30 MWV 3400 B0 120 30 45 Alpine 0 10 0 0
22 30 MWy 3360 B0 45 30 40 Alpine 0 0 10 0
23 30 MY 3360 40 40 a0 30 Alpine 0 0 10 0
24 30 MY 3360 45 40 a0 15 Alpine 0 0 5 0
25 30 MY 3310 45 110 55 15 Edge 10 0 0 0
26 30 MWV 3310 40 110 50 20 Edge 15 0 10 0
27 30 MWy 3310 40 105 50 25 Edge 30 0 10 2
28 45 MWY 3294 45 25 50 15 Edge 20 0 5 2
29 45 MY 3294 30 25 45 10 Edge K 0 25 0
30 45 MY 3294 35 30 45 15 Edge 25 0 20 0
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Distribution of ungulate evidences along Principal
Habitat components in the study area
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Ordination Technique

The aim of ordination is twofold

First, it tries to reduce a large number of variables into a
smaller number of easier to interpret variables.

And, secondly, it can be used to reveal patterns in
multivariate data that would not be identified in
univariate analyses

Ordination methods give easy-to-read graphical outputs
from relatively easy-to-use software, and this may
partly explain their popularity.



Instead of trying to understand variation in a response variable in
terms of explanatory variables, in multivariate statistics we look for
structure in the data.

The problem is that structure is rather easy to find, and all too
often it is a feature of that particular data set alone. The real
challenge is to find general structure that will apply to other data
sets as well.

Unfortunately, there is no guaranteed means of detecting pattern,
and a great deal of ingenuity has been shown by statisticians in
devising means of pattern recognition in multivariate data sets.

The main division is between methods that assume a given
structure and seek to divide the cases into groups, and methods
that seek to discover structure from inspection of the data
frame.



Different Multivariate techniques:

Principal Component Analysis (PCA)

Factor Analysis

Cluster Analysis

Discriminant Analysis

Neural Networks

Non-metric Multidimensional Scaling (NMDS)
Redundancy Analysis (RDA)

Correspondence Analysis (CA)

Canonical Correspondence Analysis (CCA)

Beginners are sometimes attracted to multivariate techniques
because of the complexity of the output they produce, making the
classic mistake of confusing the opaque for the profound.



Principal Component Analysis

The idea of principal component analysis (PCA) is to find a small
number of linear combinations of the variables so as to capture
most of the variation in the data-frame as a whole.

Principal components analysis finds a set of orthogonal
standardized linear combinations which together explain all of
the variation in the original data.

There are as many principal components as there are variables,
but typically it is only the first few that explain important
amounts of the total variation.

Calculating principal components is easy. Interpreting what the
components mean in scientific terms is hard, and potentially
equivocal.



The underlying principle of PCA

Let ¥ be the value of variable j (j = 1, ..N) for observation i (i = 1,

.,M). Most ordination techniques create linear combinations of the
variables:

Zil =Cy3 Yil +Cq Yi2+ -+ Cn YiN

The linear combination, 2,= (Z,,,...,Z,,,) is a vector of length M,
and is called a principal component, gradient or axis.

The underlying idea is that the most important
features in the N variables are caught by the new variable Z,

Most ordination techniques are designed in such a way that the
first axis is more important than the second, the second more

important than the third, etc., and the axes represent different
information.



The eigenvalue equation for all axes is given by
(S-1A)C=0

where C contains the eigenvectors for all axes, | is the
identity matrix and A the corresponding eigenvalue

“This may seem like magic to readers not used to
matrix algebra, but this expression is fundamental
in mathematics and is called the eigenvalue
equation for S”---Zuur et al 2007(Analysing
Ecological Data)



Eigenvalues in PCA represent the amount of variance explained by

each axis.
They can be expressed as numbers, percentage of the total
variance, or as cumulative percentage of the total variance

Table 12.2. Eigenvalues and eigenvalues expressed as cumulative percentage.
Some software packages rescale the eigenvalues so that the sum of all eigenvalues
is equal to 1. These are given in the second column. Unscaled eigenvalues are in

the third column, The sum of all Eie-nvaluas 15 7.

Axis Eigenvalue (scaled) Eigenvalue (unscaled) Cumulative Eigenvalue as %

0.647
0.163
0.063
0.049




