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R-PROGRAMMING: - AN INTRODUCTORY NOTE 
 

R is a language and environment for statistical computing and graphics. It is a GNU project which is 

similar to the S language and environment which was developed at Bell Laboratories (formerly AT&T, 

now Lucent Technologies) by John Chambers and colleagues.  

R provides a wide variety of statistical (linear and nonlinear modeling, classical statistical tests, time-

series analysis, classification, clustering) and graphical techniques, and is highly extensible and finally, R 

provides an Open Source route to participation in that activity. 

One of R’s strengths is the ease with which well-designed publication-quality plots can be produced, 

including mathematical symbols and formulae where needed. Great care has been taken over the 

defaults for the minor design choices in graphics, but the user retains full control. 

R is available as Free Software under the terms of the Free Software Foundation’s GNU General Public 

License in source code form. It compiles and runs on a wide variety of UNIX platforms and similar 

systems (including FreeBSD and Linux), Windows and macOS. 

R is an integrated suite of software facilities for data manipulation, calculation and graphical display. It 

includes an effective data handling and storage facility, 

• a suite of operators for calculations on arrays, in particular matrices, 

• a large, coherent, integrated collection of intermediate tools for data analysis, 

• graphical facilities for data analysis and display either on-screen or on hardcopy, and 

• a well-developed, simple and effective programming language which includes conditionals, loops, user-

defined recursive functions and input and output facilities. 
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CONSTRUCTION OF A PIE-CHART USING ‘R’ 
 

Aim- To draw a pie-chart in R using the provided data. 

Principle- R Programming language has numerous libraries to create charts and graphs. A pie-chart is a 

representation of values as slices of a circle with different colours. The slices are labeled and the 

numbers corresponding to each slice is also represented in the chart. 

In R the pie chart is created using the pie() function which takes positive numbers as a vector input. The 

additional parameters are used to control labels, colour, title etc. 

Syntax 

The basic syntax for creating a pie-chart using the R is – 

pie(x, labels, radius, main, col, clockwise) 

Following is the description of the parameters used − 

x is a vector containing the numeric values used in the pie chart. 

labels are used to describe the slices. 

radius indicates the radius of the circle of the pie chart. (value between −1 and +1). 

main indicates the title of the chart. 

col indicates the colour palette. 

clockwise is a logical value indicating if the slices are drawn clockwise or anti-clockwise. 

 

Procedure: 

I: Inserting Data 

#Define car vector with 7 values 

cars=c(1,3,6,4,9,5,10) 

length(cars) 

> #Define car vector with 7 values 

> cars=c(1,3,6,4,9,5,10) 

> length(cars) 

[1] 7 

 

II: Calculating the Percentage Value 

#Calculate the percentage for each day, rounded to one decimal place 

car_labels=round(cars/sum(cars)*100,1) 

car_labels  

#Concatenate a '%' char after each value 

car_labels=paste(car_labels,"%",sep="") 

car_labels 

> #Calculate the percentage for each day, rounded to one decimal place 

> car_labels=round(cars/sum(cars)*100,1) 

> car_labels 

[1]  2.6  7.9 15.8 10.5 23.7 13.2 26.3 

> #Concatenate a '%' char after each value 
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> car_labels=paste(car_labels,"%",sep="") 

> car_labels 

[1] "2.6%"  "7.9%"  "15.8%" "10.5%" "23.7%" "13.2%" "26.3%" 

 

III: Draw a Pie-Chart 

#Create a pie chart with defined heading and custom colours and labels 

pie(cars, 

main="Cars passing by my house each day of the week", 

col=rainbow(length(cars)), 

labels=car_labels,) 

#Create a legend at the right 

legend("bottomright", c("Mon","Tue","Wed","Thu","Fri","Sat","Sun"), cex=0.8, 

fill=rainbow(length(cars))) 

> #Create a pie chart with defined heading and custom colours and labels 

>pie(cars, 

+ main="Cars passing by my house each day of the week", 

+ col=rainbow(length(cars)), 

+ labels=car_labels,) 

> #Create a legend at the right 

>legend("bottomright", c("Mon","Tue","Wed","Thu","Fri","Sat","Sun"), cex=0.8, 

+ fill=rainbow(length(cars))) 

 

Observation: 

 

 

 

 

 

 

 

 

 

 

Conclusion: The percentage of value of cars which are passed on Sunday is higher than all other days. 
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CONSTRUCTION OF A BARPLOT USING ‘R’ 
 

Aim- To draw a bar plot in R using provided data. 

Principle- A bar chart represents data in rectangular bars with a length of the bar proportional to the 

value of the variable. R uses the function barplot() to create bar charts. R can draw both vertical and 

horizontal bars in the bar chart. In the bar chart, each of the bars can be given different colours. 

 

Procedure: 

I: Inserting Data 

#Enter Data  
 
Atasi = c(42,41,40,45,41,47,43) 
Chandrani =c(42,45,42,44,44,46,43) 
Fortune = c(41,42,39,43,41,46,41) 
Mou = c(40,44,39,44,43,46,42) 
Sujata = c(40,43,35,45,43,46,41) 
 
papers = c("MSCCONBC301","MSCCONBC302","MSCCONBC303","MSCCONBC304","Major-Theory", 
"Major-Practical", "MSCCONBMIE301") 
 
# convert to dataframe 
 
sem3.marks = data.frame(Atasi,Chandrani, Fortune, Mou, Sujata) 
str(sem3.marks) 
 
#make room for legend 
par(xpd=T, mar = par()$mar + c(0,0,0,3)) 
 
> #Enter Data  
> 
> Atasi = c(42,41,40,45,41,47,43) 
> Chandrani =c(42,45,42,44,44,46,43) 
> Fortune = c(41,42,39,43,41,46,41) 
> Mou = c(40,44,39,44,43,46,42) 
> Sujata = c(40,43,35,45,43,46,41) 
> 
> papers = c("MSCCONBC301","MSCCONBC302","MSCCONBC303","MSCCONBC304","Major-Theory", 
"Major-Practical", "MSCCONBMIE301") 
> 
> # convert to dataframe 
> 
> sem3.marks = data.frame(Atasi,Chandrani, Fortune, Mou, Sujata) 
>str(sem3.marks) 
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'data.frame':   7 obs. of  5 variables: 
 $ Atasi    : num  42 41 40 45 41 47 43 
 $ Chandrani: num  42 45 42 44 44 46 43 
 $ Fortune  : num  41 42 39 43 41 46 41 
 $ Mou      : num  40 44 39 44 43 46 42 
 $ Sujata   : num  40 43 35 45 43 46 41 
> 
> #make room for legend 
>par(xpd=T, mar = par()$mar + c(0,0,0,3)) 
> 
 
II: Draw a Barplot 
 
# Draw a Bar Graph 
 
barplot(as.matrix(sem3.marks), 
         main = "Marks obtained in third Semester" , 
         ylab = "Marks" , 
         xlab = "Name of Student", 
         beside = TRUE, 
         bty = 'L', 
cex.names= 0.8, 
         border = "blue", 
         col = rainbow(7) 
         ) 
# Place a Legend at the topleft corner 
legend("topright", papers, inset=c(-0.2,0), cex=0.5, bty = "n", fill = rainbow(7)) 

 

> # Draw a Bar Graph 

> 

> barplot(as.matrix(sem3.marks), 

+          main = "Marks obtained in third Semester" , 

+          ylab = "Marks" , 

+          xlab = "Name of Student", 

+          beside = TRUE, 

+          bty = 'L', 

+          cex.names= 0.8, 

+          border = "blue", 

+          col = rainbow(7) 

+          ) 
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> # Place a Legend at the topleft corner 

>legend("topright", papers, inset=c(-0.2,0), cex=0.5, bty = "n", fill = rainbow(7)) 

 

Observation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion:  From this barplot it can be concluded that the overall marks of Chandrani is highest in M.Sc. 

third semester examination. 
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CONSTRUCTION OF A HISTOGRAM USING ‘R’ 
 

Aim- To draw a bar plot in R using provided data. 

Principle-A histogram is a plot that lets you discover and show the underlying frequency distribution 

(shape) of a set of continuous univariate data. This allows the inspection of the data for its underlying 

distribution (e.g. normal distribution), outliers, skewness, etc. An example of a histogram and the raw 

data it was constructed from is shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

To construct a histogram from a continuous variable we first need to split the data into intervals called 

bins. In the example above, age has been split into bins, with each bin representing a 10 year period 

starting at 20 years. Each bin contains the number of occurrences of scores in the data set that are 

contained within that bin. For the above data set, the frequencies in each bin have been tabulated along 

with the scores that contributed to the frequency in each bin: 

 

 

 

 

 

 

 

Frequency Bin 
20-30 
30-40 
40-50 
50-60 
60-70 
70-80 
80-90 

90-100 

Scores IncludedinBin 

25,22 
36,38,36,38 
46,45,48,46 

55,55,52,58,55 
68,67,61 

72 
- 
91 

2 
4 
4 
5 
3 
1 
0 
1 
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Notice that, unlike a bar chart, there are no “gaps” between the bars (although some bars might be 

“absent” reflecting no frequencies). This is because a histogram represents a continuous data set and as 

such, there are no gaps in the data (although we will have to decide whether we round up or round 

down scores on the boundaries of bins). 

In a histogram, it is the area of the bar that indicates the frequency of occurrences for each bin. This 

means that the height of the bar does not necessarily indicate how many occurrences of scores thee 

wee within each individual bin. It is the product of height multiplied by the width of the bin that 

indicates the frequency of occurrences within that bin. One of the reasons that the height of the bars is 

often incorrectly assessed as indicating frequency and not the area of the bar is due to the fact that a lot 

of histograms often have equally spaced bars (bins) and under these circumstances, the height the bin 

does not reflect the frequency. 

 

Procedure: 

I: Inserting Data 

#Enter the data 
chandrani=c(4,12,11,20,23,13,22,26,30,26,32,24,31,28,40,42,36,43,36,39,42,40,41,53,51,43,48,50,44,45,46,5
7,57,54,54,62,59,63,53,60,69,70,68,79,85,78,81,76,77,83,83, 
88,97) 
> #Enter the data 
> chandrani=c(4,12,11,20,23,13,22,26,30,26,32,24,31,28,40,42,36,43,36,39,42,40,41,53, 
+ 51,43,48,50,44,45,46,57,57,54,54,62,59,63,53,60,69,70,68,79,85,78,81,76,77,83,83, 
+ 88,97) 
> 

II: Draw a Histogram 
h= hist(chandrani,  
col="green",  
xlim=c(-5,120),  
ylim=c(0,60), 
main= "Histogram of Chandrani with Frequency Polygon and Ogive", 
freq=T 
) 
#Plot a histogram 
h 
#For frquency polygon 
mp = c(min(h$mids) - (h$mids[2] - h$mids[1]), h$mids, max(h$mids) +  
(h$mids[2] - h$mids[1])) 
freq = c(0, h$counts, 0) 
 
#Plot for frequency polygon 
lines(mp,freq, type = "b", pch = 20, col = "blue", lwd =3) 
#For Ogive 
h.cumsum= cumsum(h$count) 
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ogive= c(0, h.cumsum) 
ogive 
mp2= mp[-11] 
#Plot the Ogive 
lines(mp2,ogive, type = "b", pch = 1, col = "black", lwd =1) 
#Add a box around it 
box() 
> h= hist(chandrani,  
+ col="green",  
+ xlim=c(-5,120),  
+ ylim=c(0,60), 
+ main= "Histogram of Chandrani with Frequency Polygon and Ogive", 
+ freq=T 
+ ) 
> #Plot a histogram 
> h 
$breaks 
 [1]   0  10  20  30  40  50  60  70  80  90 100 
 
$counts 
 [1]  1  4  7  7 10  9  5  4  5  1 
 
$density 
 [1] 0.001886792 0.007547170 0.013207547 0.013207547 0.018867925 0.016981132 
 [7] 0.009433962 0.007547170 0.009433962 0.001886792 
 
$mids 
 [1]  5 15 25 35 45 55 65 75 85 95 
 
$xname 
[1] "chandrani" 
 
$equidist 
[1] TRUE 
 
attr(,"class") 
[1] "histogram" 
> 
> #For frquency polygon 
> mp = c(min(h$mids) - (h$mids[2] - h$mids[1]), h$mids, max(h$mids) +  
+ (h$mids[2] - h$mids[1])) 
> freq = c(0, h$counts, 0) 
> 
> #Plot for frequency polygon 
>lines(mp,freq, type = "b", pch = 20, col = "blue", lwd =3) 
> 
> #For Ogive 
>h.cumsum= cumsum(h$count) 
> ogive= c(0, h.cumsum) 
> ogive 
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 [1]  0  1  5 12 19 29 38 43 47 52 53 
> mp2= mp[-11] 
> 
> #Plot the Ogive 
>lines(mp2,ogive, type = "b", pch = 1, col = "black", lwd =1) 
> 
> #Add a box around it 
>box() 
> 

 

Observation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 11 of 83 
 

CONSTRUCTION OF A BOXPLOT USING ‘R’ 
 

Aim- To draw a boxplot in R using the provided data. 

Principle- Boxplots are a measure of how well distributed is the data in a data set. It divides the data set 

into three quartiles. This graph represents the minimum, maximum, median, first quartile and the third 

quartile in the data set. It is also useful in comparing the distribution of data across data sets by drawing 

boxplots for each of them. 

 

 

 

 

 

 

 

 

 

Boxplots are created in R by using the boxplot() function. 

Syntax:- 

The basic syntax to create a boxplot in R is − 

boxplot(x, data, notch, varwidth, names, main) 

Following is the description of the parameters used − 

• x is a vector or a formula. 

• data is the data frame. 

• a notch is a logical value. Set as TRUE to draw a notch. 

• varwidth is a logical value. Set as true to draw width of the box proportionate to the sample 

size. 

• names are the group labels which will be printed under each boxplot. 

• main is used to give a title to the graph. 

 
Procedure: 

Example 1:   I: Inserting Data 

# Define cars vector with 5 values 

cars = c(1, 3, 6, 4, 9) 
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II: Draw a Boxplot 
 
# Create a box plot for cars 
boxplot(cars)  
 
Observation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion: From the boxplot, the data distribution is slightly skewed. There are no outliers in this 
distribution. 
 
 

Example 2:   I: Inserting Data 
 
Sites = c("TAMLA","PD-1","PD-2","MUCHIPARA") 
acidity = c(20,30,20,20) 
chloride = c(35.45,35.45,35.45,28.36) 
total.hardness = c(120,80,40,60) 
calcium.hardness = c(120,60,40,60) 
COD = c(128,NA,64,96) 
pH =c(7.4,8.29,8.1,8.2) 
conductivity = c(619,420,410,336) 
 
 
> Sites = c("TAMLA","PD-1","PD-2","MUCHIPARA") 

> acidity = c(20,30,20,20) 

> chloride = c(35.45,35.45,35.45,28.36) 

>total.hardness = c(120,80,40,60) 

>calcium.hardness = c(120,60,40,60) 

> COD = c(128,NA,64,96) 

> pH =c(7.4,8.29,8.1,8.2) 

> conductivity = c(619,420,410,336) 
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II: Creating Data Frame 
 
chandrani = data.frame(acidity,chloride,total.hardness,calcium.hardness,COD,pH,conductivity) 
row.names(chandrani)= Sites 
chandrani 
 
 
> chandrani = data.frame(acidity,chloride,total.hardness,calcium.hardness,COD,pH,conductivity) 

>row.names(chandrani)= Sites 

> chandrani 

acidity  chloride  total.hardness  calcium.hardness  COD   pH 

TAMLA    20    35.45            120                     120                    128  7.40 

PD-1        30    35.45             80                        60                      NA   8.29 

PD-2           20      35.45             40                     40                     64    8.10 

MUCHIPARA   20  28.36           60                      60                    96    8.20 

                     conductivity 

TAMLA              619 

PD-1                  420 

PD-2                   410 

MUCHIPARA     336 

 
III: Draw a Boxplot 
 
boxplot(chandrani$pH,  
main="Boxplot of pH at 4 sites",  
col="blue",  
xlab="pH") 
 
>boxplot(chandrani$pH,  

+ main="Boxplot of pH at 4 sites",  

+ col="blue",  

+ xlab="pH") 

 
Observation: 
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Conclusion:From the boxplot, it can be concluded that the pH data is mostly skewed. There are no 
outliers in thisdistribution. 
 
 
Example 3:   I: Inserting data 
 
Tamla = c(10,20,30,40,50,64) 
PD1 = c(12,43,54,23,34,34) 
PD2 = c(43,34,23,12,54,65) 
Muchipara = c(12,12,23,45,67,87) 
 
> Tamla = c(10,20,30,40,50,64) 

> PD1 = c(12,43,54,23,34,34) 

> PD2 = c(43,34,23,12,54,65) 

> Muchipara = c(12,12,23,45,67,87) 

 
II: Creating Data Frame 
 
dat = data.frame(Tamla,PD1,PD2, Muchipara) 
dat 
 
> dat = data.frame(Tamla,PD1,PD2, Muchipara) 

> dat 

  Tamla    PD1   PD2     Muchipara 

1    10        12      43            12 

2    20         43     34            12 

3    30         54     23            23 

4    40         23     12            45 

5    50         34     54            67 

6    64         34     65            87 

III: Draw a Boxplot 
 
boxplot(dat,  
main="Boxplot of AQR at 4 sites",  
col="blue",  
xlab="AQR") 
 
>  boxplot(dat,  

+ main="Boxplot of AQR at 4 sites",  

+ col="blue",  

+ xlab="AQR") 
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Observation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion: From the boxplot, it can be concluded that the AQR data of all four sites are widely 
distributed except Muchipara. The AQR data of Muchipara is slightly skewed. There are no outliers in 
any of these four distributions. 
 
 
Example 4:  I: Inserting Data 
 
Tamla = c(10,20,30,40,50,64) 
PD1 = c(12,43,54,23,34,34) 
PD2 = c(43,34,23,12,54,65) 
Muchipara = c(12,12,23,45,67,87) 
 
> Tamla = c(10,20,30,40,50,64) 

> PD1 = c(12,43,54,23,34,34) 

> PD2 = c(43,34,23,12,54,65) 

> Muchipara = c(12,12,23,45,67,87) 

II: Creating Data Frame 
 
dat = data.frame(Tamla,PD1,PD2,Muchipara) 
dat 
 
> dat = data.frame(Tamla,PD1,PD2,Muchipara) 

> dat 

  Tamla     PD1    PD2   Muchipara 

1    10         12        43        12 

2    20         43        34        12 
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3    30        54         23        23 

4    40        23         12        45 

5    50        34         54        67 

6    64        34         65        87 

III: Draw a Boxplot 
 
boxplot(dat,  
main="Boxplot of AQR at 4 sites",  
col="blue",  
xlab="AQR", 
notch=TRUE) 
 
>  boxplot(dat,  

+ main="Boxplot of AQR at 4 sites",  

+ col="blue",  

+ xlab="AQR", 

+ notch=TRUE) 

Warning message: 

In bxp(list(stats = c(10, 20, 35, 50, 64, 12, 23, 34, 43, 54, 12,  : 

  some notches went outside hinges ('box'): maybe set notch=FALSE 

 
Observation: 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

Conclusion: From the boxplot, it can be concluded that the AQR data of all four sites are widely 
distributed except Muchipara. The AQR data of Muchipara is slightly skewed. There are no outliers in 
any of these three distributions. 
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CONSTRUCTION OF A SCATTERPLOT USING ‘R’ 
 

Aim- To draw a scatterplot in R using the provided data. 

Principle- Scatterplots show many points plotted in the Cartesian plane. Each point represents the 

values of two variables. One variable is chosen in the horizontal axis and another in the vertical axis. 

The simple scatterplot is created using the plot() function. 

Syntax 

The basic syntax for creating scatterplot in R is − 

plot(x, y, main, xlab, ylab, xlim, ylim, axes) 

Following is the description of the parameters used − 

• x is the data set whose values are the horizontal coordinates. 

• y is the data set whose values are the vertical coordinates. 

• main is the tile of the graph. 

• xlab is the label in the horizontal axis. 

• ylab is the label in the vertical axis. 

• xlim is the limits of the values of x used for plotting. 

• ylim is the limits of the values of y used for plotting. 

• axes indicate whether both axes should be drawn on the plot. 

 

Procedure: 

I: Inserting Data and make a Data Frame 

#Draw ScatterPlot for a Nitrate Estimation Calibration 
#Enter data 
nitrate.conc= c(0,1,2,3,4) 
nitrate.OD= c(0,0.471,1.009,1.5,1.963) 
#make dataframe 
cal.dat= data.frame(x=nitrate.conc, y=nitrate.OD) 
cal.dat 
 
> #Draw ScatterPlot for a Nitrate Estimation Calibration 
> #Enter data 
>nitrate.conc= c(0,1,2,3,4) 
>nitrate.OD= c(0,0.471,1.009,1.5,1.963) 
> #make dataframe 
> cal.dat= data.frame(x=nitrate.conc, y=nitrate.OD) 
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> cal.dat 
  x     y 
1 0 0.000 
2 1 0.471 
3 2 1.009 
4 3 1.500 
5 4 1.963 
 
II. Draw a Scatterplot 
 
#Plot with main and axis titles 
plot(cal.dat$x,cal.dat$y, 
main="Nitrate Calibration Graph", 
xlab="Nitrate Concentration(ppm)", 
ylab="OD", 
pch=19, 
frame=TRUE) 
abline(lm(y~x,data=cal.dat), 
col="blue") 
fit=lm(y~x,data=cal.dat) 
summary(fit) 

> #Plot with main and axis titles 

>plot(cal.dat$x,cal.dat$y, 

+ main="Nitrate Calibration Graph", 

+ xlab="Nitrate Concentration(ppm)", 

+ ylab="OD", 

+ pch=19, 

+ frame=TRUE) 

> abline(lm(y~x,data=cal.dat), 

+ col="blue") 

> fit=lm(y~x,data=cal.dat) 

> summary(fit) 

Call: 

lm(formula = y ~ x, data = cal.dat) 

Residuals: 

      1       2       3       4       5  

0.0024 -0.0221  0.0204  0.0159 -0.0166  

Coefficients: 

 Estimate Std. Error t value Pr(>|t|)     

(Intercept) -0.002400   0.016963  -0.141    0.896     

x            0.495500   0.006925  71.552 6.02e-06 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error: 0.0219 on 3 degrees of freedom 
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Multiple R-squared:  0.9994,    Adjusted R-squared:  0.9992  

F-statistic:  5120 on 1 and 3 DF, p-value: 6.016e-06 

 

Observation: 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

 

 

Conclusion: Here we can see that the nitrogen concentration (ppm) values of five samples are placed in 

a straight line. There is a positive relation between nitrogen concentration (ppm) values and OD values. 
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PERFORMANCE OF t-TEST USING ‘R’ 
 
 

Aim- To perform t-test in R using provided data. 

Principle- A t-test can tell whether two groups have the same mean. A t-test is also called a Student 

Test. A t-test can be estimated for: 

  1.  A single vector (i.e., one-sample t-test) 

  2.  Two vectors from the same sample group (i.e., paired t-test). 

You assume that both vectors are randomly sampled, independent and come from a normally 

distributed population with unknown but equal variances.  

The basic idea behind a t-test is to use statistic to evaluate two contrary hypotheses: 

H0: Null hypothesis: The average is the same as the sample used. 

HA: Alternative hypothesis: The average is different from the sample used. 

The t-test is commonly used with small sample sizes. To perform a t-test, you need to assume the 

normality of the data. 

The basic syntax for t.test() is:  

t.test(x, y = NULL, 

mu = 0, var.equal = FALSE) 

arguments: 

- x: A vector to compute the one-sample t-test 

- y: A second vector to compute the two-sample t-test 

- mu: Mean of the population- var.equal: Specify if the variance of the two vectors is equal. By default, 

set to `FALSE` 

 

ONE SAMPLE t-TEST 

The t-test, or student's test, compares the mean of a vector against a theoretical mean. The formula 

used to compute the t-test is:  

t = (xbar - mu)/(sigma/sqrt(n)) 

xbar = sample mean 
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mu = theoretical mean 

sigma = sample standard deviation 

n = sample population 

To evaluate the statistical significance of the t-test, you need to compute the p-value. The p-value 

ranges from 0 to 1 and is interpreted as follows: 

A p-value lower than 0.05 means you are strongly confident to reject the null hypothesis, thus 

alternative hypothesis is accepted.  

A p-value higher than 0.05 indicates that you don't have enough pieces of evidence to reject the null 

hypothesis. 

You can construct the p-value by looking at the corresponding absolute value of the t-test in the Student 

distribution with a degree of freedom equals to df = n – 1 

For instance, if you have 5 observations, you need to compare our t-value with the t-value in the 

Student distribution with 4 degrees of freedom and at a 95 per cent confidence interval. To reject the 

null hypothesis, the t-value should be higher than 2.77. 

 

Problem: 

Glucose level (in mg/100ml) of blood sample from a human population is measured as 84, 96, 105, 96, 

98, 106, 103, 106, 116 and 89. The normal blood glucose level for average male adult human is 98. 

Does the glucose level of the group significantly differ from the average population? 

 

Solution: 

You can use a one-sample t-test to check whether the level of glucose of the group differ from the 

population. You can draw a hypothesis test: 

H0: The average blood glucose level of the group does not significantly differ from population average. 

HA: The average blood glucose level of the group differs from thepopulation average. 

You use a significance level of 0.05. 

#enter data 
bg=c(84,96,105,96,98,106,103,106,116,89) 
bg 
str(bg) 
mean(bg) 
summary(bg) 
 
[1]  84  96 105  96  98 106 103 106 116  89 
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num [1:10] 84 96 105 96 98 106 103 106 116 89 
 
 [1] 99.9 
 
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  
   84.0    96.0   100.5    99.9   105.8   116.0  
 
#plot a boxplot 
boxplot(bg) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To check for normality test we perform Shapiro-Wilk normality test. If the p value is >0.05 then accept 
the null hypothesis. That means data is normally distributed. 
 
#Shapiro- Wilk test 
shapiro.test(bg) 
 
Shapiro-Wilk normality test 
data:  bg 
W = 0.96888, p-value = 0.8802 
 
From the output, the p-value > 0.05 implying that the distribution of the data is not significantly 
different from a normal distribution. In other words, we can assume normality. 
 
t.bg=t.test(bg,mu=98) 
#print the result 
t.bg 
data:  bg 

t = 0.64752, df = 9, p-value = 0.5335 

alternative hypothesis: true mean is not equal to 98 

95 percent confidence interval: 
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  93.2622 106.5378 

sample estimates: 

mean of x  

     99.9 

Results:There was not any significant effect of glucose level, t(9)= 0.65, p = 0.53. 

Conclusion: 

The p-value of the one-sample t-test is 0.5335 and above 0.05. You can be confident at 95% that the 

amount of blood glucose level is between 93.2622 and 106.5378 grams. We fail to reject the null 

hypothesis. The sample blood glucose level does not differ significantly from the population average. 

 

INDEPENDENT t-TEST  

The independent t-test also called the two-sample t-test, independent-samples t-test or student's t-test, 

is an inferential statistical test that determines whether there is a statistically significant difference 

between the means in two unrelated groups. 

Null and alternative hypotheses for the independent t-test. 

The null hypothesis for the independent t-test is that the population means from the two unrelated 

groups are equal: 

H0: u1 = u2 

In most cases, we are looking to see if we can show that we can reject the null hypothesis and accept 

the alternative hypothesis, which is that the population means are not equal: 

HA: u1 ≠ u2 

To do this, we need to set a significance level (also called alpha) that allows us to either reject or accept 

the alternative hypothesis. Most commonly, this value is set at 0.05. 

What do you need to run an independent t-test? 

To run an independent t-test, you need the following: 

One independent, categorical variable that has two levels/groups. 

One continuous dependent variable. 

 

Unrelated groups 

Unrelated groups also called unpaired groups or independent groups, are grouped in which the cases 

(e.g., participants) in each group are different. Often we are investigating differences in individuals, 

which means that when comparing two groups, an individual in one group cannot also be a member of 
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the other group and vice versa. An example would be gender - an individual would have to be classified 

as either male or female – not both. 

Assumption of normality of the dependent variable 

The independent t-test requires that the dependent variable is approximately normally distributed 

within each group. 

Note: Technically, it is the residuals that need to be normally distributed, but for an independent t-test, 

both will give you the same result. 

You can test for this using several different tests, but the Shapiro-Wilks test of normality or a graphical 

method, such as a Q-Q Plot, is very common. You can run these tests using SPSS Statistics, the procedure 

for which can be found in our Testing for Normality guide. However, the t-test is described as a robust 

test concerning the assumption of normality. This means that some deviation away from normality does 

not have a large influence on Type I error rates. The exception to this is if the ratio of the smallest to 

largest group size is greater than 1.5 (largest compared to smallest). 

Assumption of homogeneity of variance 

The independent t-test assumes the variances of the two groups you are measuring are equal in the 

population. If your variances are unequal, this can affect the Type I error rate. The assumption of 

homogeneity of variance can be tested using Levene's Test of Equality of Variances 

levene test(response variable ~ group variable, data = data) 

This test for homogeneity of variance provides an F-statistic and significance value (p-value). We are 

primarily concerned with the significance value – if it is greater than 0.05 (i.e., p > .05), our group 

variances can be treated as equal. However, if p < 0.05, we have unequal variances and we have violated 

the assumption of homogeneity of variances. 

If the Levene's Test for Equality of Variances is statistically significant, which indicates that the group 

variances are unequal in the population, you can correct for this violation by not using the pooled 

estimate for the error term for the t-statistic. 

 

• UNPAIRED 2 SAMPLE t-TEST 

The unpaired two-sample t-test is used to compare the mean of two independent groups. 

If the p-value is inferior or equal to the significance level 0.05, we can reject the null hypothesis and 

accept the alternative hypothesis. In other words we can conclude that the mean values of two different 

groups are significantly different. 

t.test(x,y,alternative= “two.sided”, var.equal=TRUE) 
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• x,y: numeric vectors 

• alternative: the alternative hypothesis. Allowed value is one of “two.sided” (default), “greater” or “less” 

• var.equal: a logical variable indicating whether to treat the two variances as being equal. If TRUE then 

the pooled variance is used to estimate the variance otherwise the Welch test is used 

 

Problem: 

Weights of a group of 9 men and 9 women are provided. Use a 2 sample t-test to verify whether the 

mean weight of men is equal to the mean weight of the women. 

Women weight (kg): 38.9, 61.2, 73.3, 21.8, 63.4, 64.6, 48.4, 48.8, 48.5 

Men weight (kg): 67.8, 60, 63.4, 76, 89.4, 73.3, 67.3, 61.3, 62.4 

 

Solution: 

Null Hypothesis : The mean weights of the women and men are equal. 

Alternative Hypothesis: The mean weights of the women differ significantly from the mean weights of 

the men. 

#Entering the data 
women_weight=c(38.9,61.2,73.3,21.8,63.4,64.6,48.4,48.8,48.5) 
men_weight=c(67.8,60,63.4,76,89.4,73.3,67.3,61.3,62.4) 
#create a data frame 
my_data=data.frame(group=rep(c("women","men"),each=9),weight=c(women_weight,men_weight)) 
#print all data 
print(my_data)                 #my_data 
#check data 
str(my_data) 
     group   weight 
1  women   38.9 
2  women   61.2 
3  women   73.3 
4  women   21.8 
5  women   63.4 
6  women   64.6 
7  women   48.4 
8  women   48.8 
9  women   48.5 
10   men     67.8 
11   men     60.0 
12   men     63.4 
13   men    76.0 
14   men    89.4 
15   men    73.3 
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16   men    67.3 
17   men    61.3 
18   men    62.4 
 
'data.frame':   18 obs. of  2 variables: 
 $ group: chr  "women" "women" "women" "women" ... 
 $ weight: num  38.9 61.2 73.3 21.8 63.4 64.6 48.4 48.8 48.5 67.8 ...  
 
#calculate mean and standard deviation of each group 
mean(women_weight)              #find mean value 
sd(women_weight)                #find standard deviation value 
mean(men_weight)                #find mean value 
sd(men_weight)                  #find standard deviation value 
 
> mean(women_weight)              #find mean value 
[1] 52.1 
> sd(women_weight)                #find standard deviation value 
[1] 15.59671 
> mean(men_weight)                #find mean value 
[1] 68.98889 
> sd(men_weight)                  #find standard deviation value 
[1] 9.375426  
 
#check data 
boxplot(women_weight,men_weight,main="Boxplot of weights of men and women", 
xlab="groups", 
ylab="weights in kg", 
names=c("women","men") 
) 
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#Shapiro-Wilk test for normalitry 
shapiro.test(women_weight) 
 
Shapiro-Wilk normality test 
data:  women_weight 
W = 0.94266, p-value = 0.6101  
shapiro.test(men_weight) 
 
  Shapiro-Wilk normality test 
data:  men_weight 
W = 0.86425, p-value = 0.1066  
 
#Test for Homoscedaticity 
res.ftest=var.test(weight~group,data=my_data) 
res.ftest 
 
 
F test to compare two variances 
data:  weight by group 
F = 0.36134, num df = 8, denom df = 8, p-value = 0.1714 
alternative hypothesis: true ratio of variances is not equal to 1 
95 percent confidence interval: 
 0.08150656 1.60191315 
sample estimates: 
ratio of variances  
         0.3613398  
 
#compute t-test(2 tailed) 
t.res=t.test(women_weight,men_weight,var.equal=TRUE) 
t.res 
 
        Two Sample t-test 
 
data:  women_weight and men_weight 
t = -2.7842, df = 16, p-value = 0.01327 
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval: 
 -29.748019  -4.029759 
sample estimates: 
mean of x mean of y  
52.10000  68.98889 
 
#Compute t.test(1 tailed,less) 
t1.res=t.test(women_weight,men_weight,var.equal=TRUE,alternative="less") 
t1.res 

  Two Sample t-test 

data:  women_weight and men_weight 
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t = -2.7842, df = 16, p-value = 0.006633 

alternative hypothesis: true difference in means is less than 0 

95 percent confidence interval: 

      -Inf -6.298536 

sample estimates: 

mean of x mean of y  

52.10000  68.98889 

 

Results:Results of the independent sample t-tests indicated that there were women’s weight is 

significantly less than men’s weight, t(16)= -2.78, p< 0.001. 

Conclusion: 

Women’s weight (mean= 52.1, std. dev= 15.6) is significantly different (alpha= 0.05) from men’s weight 

(mean= 68.99, std. dev= 9.37) as per t.test (alpha= 0.05, df= 16, t= -2.78, p= 0.0137). One tailed t.test 

(alpha= 0.05, df= 16, t= -2.78, p= 0.0066) showed that women’s weight is significantly less than men’s 

weight. 

 

• PAIRED SAMPLE t-TEST 

The paired samples t-test is used to compare the means between two related groups of samples. In this 

case, you have two values (i.e. pair of values) for the same samples. 

If the p-value is inferior or equal to 0.05, we can conclude that the difference between the two paired 

samples is significantly different. 

To perform paired samples t-test comparing the means of two paired samples (x & y), the R function 

t.test() can be used follow: 

t.test(x,y, paired= TRUE, alternative= “two.sided”) 

• x,y: numeric vectors 

• paired: a logical value specifying that we want to compute a paired t-test 

• alternative: the alternative hypothesis. Allowed value is one of “two.sided” (default), “greater” or “less” 

Preliminary test to check paired t-test assumptions 

Assumption 1: Are the two samples paired? 

Yes, data has been collected from same sample twice. 

Assumption 2: is this a large sample? 

No, n < 30 

Is the data normally distributed? 
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Use Shapiro-Wilk test to check for normality for the difference of data, a p-value greater than or equal 

to 0.05 will fail to reject the null hypothesis, i.e., we accept the null hypothesis, data is normally 

distributed.  

The result of t.test() function is a list containing the following components: 

• statistic: the value of the t test statistics 

• parameter: the degrees of freedom for the t test statistics 

• p.value: the p-value for the test 

• conf.int: a confidence interval for the mean appropriate to the specified alternative hypothesis 

• estimate: the means of the groups being compared 9in the case of independent t test) or difference in 

means (in the case of paired t test) 

Problem: 

The weight of 10 mice has been measured before and after the treatment during 3 months. 

Solution: 

#Data in two numeric vectors 
#Weight of the mice before treatment 
before=c(200.1,190.9,192.7,213,241.4,196.9,172.2,185.5,205.2,193.7) 
#Weight of the mice after treatment 
after=c(392.9,393.2,345.1,393,434,427.9,422,383.9,392.3,352.2) 
#Create a data frame 
my_data=data.frame(group=rep(c("before","after"),each=10),weight=c(before,after)) 
my_data 
 
group  weight 
1  before  200.1 
2  before  190.9 
3  before  192.7 
4  before  213.0 
5  before  241.4 
6  before  196.9 
7  before  172.2 
8  before  185.5 
9  before  205.2 
10 before 193.7 
11  after   392.9 
12  after  393.2 
13  after  345.1 
14  after  393.0 
15  after  434.0 
16  after  427.9 
17  after  422.0 
18  after  383.9 
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19  after  392.3 
20  after  352.2  
 
print(paste("mean before=",mean(before))) 
print(paste("mean after=",mean(after))) 
print(paste("standard deviation before=",sd(before))) 
print(paste("standard deviation after=",sd(after))) 
 
>print(paste("mean before=",mean(before))) 
[1] "mean before= 199.16" 
>print(paste("mean after=",mean(after))) 
[1] "mean after= 393.65" 
>print(paste("standard deviation before=",sd(before))) 
[1] "standard deviation before= 18.4735366282571" 
>print(paste("standard deviation after=",sd(after))) 
[1] "standard deviation after= 29.3980063571967"  
 
#Draw boxplot 
boxplot(before,after,main="Boxplot of mice weight before and after treatment", 
xlab="groups", 
ylab="weights in g", 
names=c("before","after")) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
#Check for normality 
d=before-after 
shapiro.test(d) 
 
  Shapiro-Wilk normality test 
data:  d 
W = 0.94536, p-value = 0.6141  
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#Compute t-test 
t.res=t.test(before,after,paired=TRUE,alternative="two.sided") 
t.res 

Paired t-test 

data:  before and after 

t = -20.883, df = 9, p-value = 6.2e-09 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 

 -215.5581 -173.4219 

sample estimates: 

mean of the differences  

                -194.49 

 

Results:Results of the dependent (paired) sample t-tests indicated that the average weight of mice 

before treatment is significantly different from the average weight aftertreatmentduring 3 months, t(9)= 

-20.88, p< 0.001. 

 

Conclusion: 

The t-value of the test is -20.88 (df= 9), which is less than the significance level at alpha= 0.05. We can 

the reject the null hypothesis and conclude that the average weight of the mice before (mean= 199.16, 

std. dev= 18.47) treatment is significantly different from the average weight after (mean= 393.65, std. 

dev= 20.40) treatment with p-value= 6.2e-09. 
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PERFORMANCE OF ANOVA USING ‘R’ 
 

Aim- To perform one-way ANOVA in R using provided data 

Principle- ANOVA -short for “analysis of variance”- is a statistical technique for testing if 3(+) population 

means are all equal. 

The two simplest scenarios are: 

1. one-way ANOVA:- for comparing 3(+) groups on 1 variable: do all children from school A, B and C have 

equal mean IQ scores?  

2. repeated measures ANOVA:- for comparing 3(+) variables in 1 group: is the mean rating for movie A, B 

and C equal for all people? 

Simple Example - One-Way ANOVA 

A scientist wants to know if all children from schools A, B and C have equal mean IQ scores. Each school 

has 1,000 children. It takes too much time and money to test all 3,000 children. So a simple random 

sample of n = 10 children from each school are tested. 

Descriptives Table 

Right, so our data contain 3 samples of 10 children each with their IQ scores. Running a simple 

descriptives table immediately tells us the mean IQ scores for these samples. The result is shown below. 

Our sample from school B has the highest mean IQ - roughly 113 points. The lowest mean IQ -some 93 

points- is seen for school C. 

Now, here's the problem: our mean IQ scores are only based on tiny samples of 10 children per school. 

So couldn't it be that all 1,000 children per school have the same mean IQ? 

Perhaps we just happened to sample the smartest children from school B and the dumbest children 

from school C?* Is that realistic? We'll try and show that this statement -our null hypothesis- is not 

credible given our data. 

ANOVA - Null Hypothesis 

The null hypothesis for (any) ANOVA is that all population means are exactly equal. 
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If this holds, then our sample means will probably differ a bit. After all, samples always differ a bit from 

the populations they represent. However, the sample means probably shouldn't differ too much. Such 

an outcome would be unlikely under our null hypothesis of equal population means. So if we do find 

this, we'll probably no longer believe that our population means were equal. 

ANOVA - Sums of Squares Between 

So precisely how different are our 3 sample means? How far do these numbers lie apart? A number that 

tells us just that is the variance. So we'll compute the variance among our 3 sample means. 

As you may (or may not) understand from the ANOVA formulas, this starts with the sum of the squared 

deviations between the 3 sample means and the overall mean. The outcome is known as the “sums of 

squares between” or SSbetween. So sums of squares between expresses the total amount of dispersion 

among the sample means. 

Everything else equal, larger SSbetween indicates that the sample means differ more. And the more 

different our sample means, the more likely that our population means differ as well. 

Degrees of Freedom and Mean Squares Between 

When calculating a “normal” variance, we divide our sums of squares by its degrees of freedom (df). 

When comparing k means, the degrees of freedom (df) is (k - 1). Dividing SSbetween by (k - 1) results in 

mean squares between MSbetween. In short, mean squares between is the variance among sample 

means. 

MSbetween thus indicates how far our sample means differ (or lie apart). The larger this variance 

between means, the more likely that our population means differ as well. So from SSbetween, we go to 

MSbetween by dividing by number of schools - 1 in this case, ie by 3-1 = 2 

variance, sigma^2 = (x - xbar)^2 / (N-1) 

ANOVA - Sums of Squares Within 

If our population means are equal, then what difference between sample means -MSbetween- can we 

reasonably expect? Well, this depends on the variance within subpopulations. The figure below 

illustrates this for 3 scenarios. 

The 3 leftmost histograms show population distributions for IQ in schools A, B and C. Their narrowness 

indicates a small variance within each school. If we'd sample n = 10 students from each school, should 

we expect very different sample means? 

Probably not. Why? Well, due to the small variance within each school, the sample means will be close 

to the (equal) population means. These narrow histograms don't leave a lot of room for their sample 

means to fluctuate and -hence- differ. The 3 rightmost histograms show the opposite scenario: the 
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histograms are wide, indicating a large variance within each school. If we'd sample n = 10 students from 

each school, the means in these samples may easily differ quite a lot. In short, larger variances within 

schools probably result in a larger variance between sample means per school. We estimate the within-

groups population variances from the within-groups sample variances. Makes sense, right? The exact 

calculations are in the ANOVA formulas 

In short: sums of squares within (SSwithin) indicates the total amount of dispersion within groups; 

degrees of freedom within (DFwithin) is (n - k) for n observations and k groups and mean squares within 

(MSwithin) -basically the variance within groups- is SSwithin / DFwithin. ANOVA Test Statistic – F So how 

likely are the population means to be equal? This depends on 3 pieces of information from our samples: 

> the variance between sample means (MSbetween); 

> the variance within our samples (MSwithin) and 

> the sample sizes. 

We combine all this information into a single number: our test statistic F. The diagram below shows how 

each piece of evidence impacts F. 

ANOVA - Assumptions 

The assumptions for ANOVA are: 

1. Independent observations; 

2. Normality: the outcome variable must follow a normal distribution in each subpopulation. Normality 

is only needed for small sample sizes, say n < 20 per group. 

3. Homogeneity: the variances within all subpopulations must be equal. Homogeneity is only needed if 

sample sizes are very unequal. In this case, Levene's test indicates if it's met. 

If these assumptions hold, then F follows an F-distribution with DFbetween and DFwithin degrees of 

freedom. In our example -3 groups of n = 10 each- that'll be F(2,27). 

 

Problem: 

A scientist wants to know if all children from schools A, B and C have equal mean IQ scores. Each 

school has 1,000 children. It takes too much time and money to test all 3,000 children. So a simple 

random sample of n = 10 children from each school are tested. Here A = 1, B = 2, C= 3 in Group, Score 

contains the 10 corresponding data. 

Solution: 

#enter data 
Score= c(90, 87, 93, 115, 97, 85, 102, 110, 111, 102, 135, 125, 107, 96, 114, 125, 94, 123, 111, 96, 93, 
101, 74, 87, 76, 87, 98, 108, 113, 96) 
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Group=c(rep(1,10),rep(2,10),rep(3,10)) 
my.dat=data.frame(Group,Score) 
my.dat] 
 
  Group Score 
1      1    90 
2      1    87 
3      1    93 
4      1   115 
5      1    97 
6      1    85 
7      1   102 
8      1   110 
9      1   111 
10     1   102 
11     2   135 
12     2   125 
13     2   107 
14     2    96 
15     2   114 
16     2   125 
17     2    94 
18     2   123 
19     2   111 
20     2    96 
21     3    93 
22     3   101 
23     3    74 
24     3    87 
25     3    76 
26     3    87 
27     3    98 
28     3   108 
29     3   113 
30     3    96 
#check data structure 
str(my.dat) 
 
'data.frame':   30 obs. of  2 variables: 
 $ Group: num  1 1 1 1 1 1 1 1 1 1 ... 
 $ Score: num  90 87 93 115 97 85 102 110 111 102 ... 
 
#convert group to factor from number 
my.dat$Group=factor(my.dat$Group) 
str(my.dat) 
 
'data.frame':   30 obs. of  2 variables: 
 $ Group: Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ... 
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 $ Score: num  90 87 93 115 97 85 102 110 111 102 ... 
 
#visualize thr data using Boxplot 
boxplot(Score~Group, 
data=my.dat, 
col=c("BLUE","PINK","GREEN"), 
order=c(1,2,3), 
main="Boxplot of IQ level of students  in three schools", 
ylab="Score", 
xlab="School") 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
#perform one-way ANOVA 
res.aov=aov(Score~Group,data=my.dat) 
#observe the result 
summary(res.aov) 
 
            Df Sum Sq Mean Sq F value Pr(>F)    
Group        2   1956   978.1    6.15 0.0063 ** 
Residuals   27   4294   159.0                   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
#Tukey multiple pairwise-comparisons for our data 
TukeyHSD(res.aov) 
 
Tukey multiple comparisons of means 
    95% family-wise confidence level 
 
Fit: aov(formula = Score ~ Group, data = my.dat) 
 
$Group 
     diff         lwr       upr     p adj 
2-1  13.4  -0.5835966 27.383597 0.0622882 
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3-1  -5.9 -19.8835966  8.083597 0.5549304 
3-2 -19.3 -33.2835966 -5.316403 0.0054803 
 
 
#check ANOVA assumptions:test validity? 
#1.Homogeneity of variances 
plot(res.aov,1) 
bartlett.test(Score~Group,data=my.dat) 
Bartlett test of homogeneity of variance 
data:  Score by Group 
Bartlett's K-squared = 0.80105, df = 2, p-value = 0.67 
library(car) 
leveneTest(Score~Group,data=my.dat) 
 
Levene's Test for Homogeneity of Variance (center = median) 
      Df F value Pr(>F) 
group 2  0.5349 0.5918 
      27      
#2.Normality 
plot(res.aov,2) 

 

 

 

 

 

 

 

 

 

 

 

 

Results:Results of the ANOVA indicated that there was a significant main effect between students and 

their IQ level, F(2,27)= 6.15, p> 0.001. 

Conclusion: 

 The model summary first lists the independent variables being tested in the model (in this case we have 

only one, ‘Scores’) and the model residuals (‘Residual’). All of the variations that are not explained by 

the independent variables is called residual variance. 



Page 38 of 83 
 

The Df column displays the degrees of freedom for the independent variable (the number of levels in 

the variable minus 1), and the degrees of freedom for the residuals (the total number of observations 

minus one and minus the number of levels in the independent variables). 

The Sum Sq column displays the sum of squares (a.k.a. the total variation between the group means and 

the overall mean). 

The Mean Sq column is the mean of the sum of squares, calculated by dividing the sum of squares by the 

degrees of freedom for each parameter. 

The F-value column is the test statistic from the F test. This is the mean square of each independent 

variable divided by the mean square of the residuals. The larger the F value, the more likely it is that the 

variation caused by the independent variable is real and not due to chance. 

The Pr(>F) column is the p-value of the F-statistic. This show how likely it is that the F-value calculated 

from the test would have occurred if the null hypothesis of no difference among group means were 

true. 

As the p-value is less than the significance level 0.05, we can conclude that there are significant 

differences between the groups highlighted with “*” in the model summary. 

*Multiple pairwise-comparison between the means of groups* 

In one-way ANOVA test, a significant p-value indicates that some of the group means are different, but 

we don’t know which pairs of groups are different. 

It’s possible to perform multiple pairwise-comparisons, to determine if the mean difference between 

specific pairs of group is statistically significant. 

*Tukey multiple pairwise-comparisons* 

As the ANOVA test is significant, we can compute Tukey HSD(Tukey Honest Significant Differences, R 

function: TukeyHSD ()) for performing multiple pairwise-comparison between the means of groups. 

The function TukeyHD () takes the fitted ANOVA as an argument. 

#Tukey multiple pairwise-comparisons for our data 

1. diff: difference between means of the groups 

2. lwr,upr: the lower and the upper end point of the confidence interval at 95%(default) 

P adj: p-value after adjustment for the multiple comparisons. 

Check the ANOVA assumptions: test validity? 

Check the homogeneity of variance assumption 

The residuals versus fits plot can be used to check the homogeneity of variances. 

1. Homogeneity of variances 



Page 39 of 83 
 

In the plot below, there is no evident relationships between residuals and fitted values (the mean of 

each groups), which is good. So, we can assume the homogeneity of variances. 

Barlett test shows us that the variances are homogenous (i.e. a non-significant P value). The reason we 

may not use a Barlett’s test all of the time is because it is highly sensitive to departures from normality 

(i.e. non-normal datasets). If we suspect our data is not-normal or is slightly not-normal and want to test 

homogeneity of variances anyways, we can use a Levene’s Test to account for this. 

 

2. Check the normality assumption 

Normality plot of residuals. In the plot below, the quantiles of the residuals are plotted against the 

quantiles of the normal distribution. A 45 degree reference line is also plotted. 

The normal probability plot of residuals is used to check the assumption that the residuals are normally 

distributed. It should approximately follow a straight line. 

 

Two -Way ANOVA 

A two-way ANOVA is used when you have two or more independent variables. A two-way ANOVA is the 

ANOVA you use when you have two or more independent variables with multiple conditions. A one-way 

ANOVA is used when you have one independent variable with multiple conditions. 

 

Problem: 

To determine the effects of different types of fertilizer and the frequency with which you water the 

tree on the number of fruits produced. Your two independent variables are 1) fertilizer type and 2) 

frequency tree is water. In the two-way ANOVA example, we are modelling crop yield as a function of 

the type of fertilizer and planting density. First, we use aov () to run the model, then we use summary 

() to print the summary of the model.  

Solution; 

# enter the data 

density = c(rep(1:2,48))     

 block = c(rep(1:4,24)) 

fertilizer = c(rep(1,32),rep(2,32),rep(3,32)) 

yield = c(177.228692278688, 177.550041265426, 176.408461852371, 177.703625478918, 

177.125486343584, 176.778342481435, 176.746301895632, 177.061164221059, 176.274949297277, 

177.967202929576, 176.601299834494, 177.030542802918, 177.479507160588, 176.874129801452, 

176.114388315927, 176.008394511531, 176.108312589654, 178.35744091425, 177.262445084271, 
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176.918844938972, 176.239015775225, 176.573069754873, 176.039297939843, 176.817922165499, 

176.160586502816, 177.226424131397, 175.938533030004, 177.16493668281, 175.360839598647, 

177.276995681026, 175.945443795425, 175.882779618556, 176.479340919814, 176.0443421205, 

177.412461749009, 177.360818239535, 177.385499180836, 176.975807696393, 177.379778689577, 

177.99799506429, 176.434862565867, 176.933265092142, 175.983480169992, 177.034092659355, 

176.436762368181, 176.06774497035, 177.121048632786, 177.197721367386, 176.60372408049, 

177.208171431058, 177.148828595107, 176.819076695268, 176.999066949946, 178.134604582348, 

176.429156002757, 176.668322935082, 176.895866859859, 177.779492860266, 176.414495002246, 

176.878897743394, 177.580683078112, 176.957268920193, 175.747545582883, 177.352595079015, 

177.104186398865, 178.079635168278, 176.903422145535, 177.540284161493, 177.03270969652, 

178.28604192157, 176.405410230471, 176.430830126686, 177.396330635021, 176.92557577835, 

177.055045778695, 177.344163946335, 177.128367531761, 177.168302204533, 176.353940642858, 

179.060899036915, 176.300517050366, 177.59335237605, 177.115245241837, 177.794457435485, 

177.004038102495, 178.036858366448, 177.701366283038, 177.632808263613, 177.652274608017, 

177.100417857738, 177.187967031073, 177.405291855943, 178.14164435679, 177.710612540335, 

177.687264356834, 177.118175977614)  

crop.data 

=data.frame(density=as.factor(density),block=as.factor(block),fertilizer=as.factor(fertilizer),yield) 

summary(crop.data) 

data.frame is making the vectors into a data frame, and, density=as.factor(density) this part is telling R 

that the data in density is to be considered as a factor and not numerical. Summary() gives the 5 point 

descriptive stats of the data.  

 

density block fertilizer    yield 

1        1     1          1 177.2287 

2        2     2          1 177.5500 

3        1     3          1 176.4085 

4        2     4          1 177.7036 

5        1     1          1 177.1255 

6        2     2          1 176.7783 

7        1     3          1 176.7463 

8        2     4          1 177.0612 
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9        1     1          1 176.2749 

10       2     2          1 177.9672 

11       1     3          1 176.6013 

12       2     4          1 177.0305 

13       1     1          1 177.4795 

14       2     2          1 176.8741 

15       1     3          1 176.1144 

16       2     4          1 176.0084 

17       1     1          1 176.1083 

18       2     2          1 178.3574 

19       1     3          1 177.2624 

20       2     4          1 176.9188 

21       1     1          1 176.2390 

22       2     2          1 176.5731 

23       1     3          1 176.0393 

24       2     4          1 176.8179 

25       1     1          1 176.1606 

26       2     2          1 177.2264 

27       1     3          1 175.9385 

28       2     4          1 177.1649 

29       1     1          1 175.3608 

30       2     2          1 177.2770 

31       1     3          1 175.9454 

32       2     4          1 175.8828 

33       1     1          2 176.4793 

34       2     2          2 176.0443 

35       1     3          2 177.4125 

36       2     4          2 177.3608 

37       1     1          2 177.3855 

38       2     2          2 176.9758 

39       1     3          2 177.3798 

40       2     4          2 177.9980 
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41       1     1          2 176.4349 

42       2     2          2 176.9333 

43       1     3          2 175.9835 

44       2     4          2 177.0341 

45       1     1          2 176.4368 

46       2     2          2 176.0677 

47       1     3          2 177.1210 

48       2     4          2 177.1977 

49       1     1          2 176.6037 

50       2     2          2 177.2082 

51       1     3          2 177.1488 

52       2     4          2 176.8191 

53       1     1          2 176.9991 

54       2     2          2 178.1346 

55       1     3          2 176.4292 

56       2     4          2 176.6683 

57       1     1          2 176.8959 

58       2     2          2 177.7795 

59       1     3          2 176.4145 

60       2     4          2 176.8789 

61       1     1          2 177.5807 

62       2     2          2 176.9573 

63       1     3          2 175.7475 

64       2     4          2 177.3526 

65       1     1          3 177.1042 

66       2     2          3 178.0796 

67       1     3          3 176.9034 

68       2     4          3 177.5403 

69       1     1          3 177.0327 

70       2     2          3 178.2860 

71       1     3          3 176.4054 

72       2     4          3 176.4308 
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73       1     1          3 177.3963 

74       2     2          3 176.9256 

75       1     3          3 177.0550 

76       2     4          3 177.3442 

77       1     1          3 177.1284 

78       2     2          3 177.1683 

79       1     3          3 176.3539 

80       2     4          3 179.0609 

81       1     1          3 176.3005 

82       2     2          3 177.5934 

83       1     3          3 177.1152 

84       2     4          3 177.7945 

85       1     1          3 177.0040 

86       2     2          3 178.0369 

87       1     3          3 177.7014 

88       2     4          3 177.6328 

89       1     1          3 177.6523 

90       2     2          3 177.1004 

91       1     3          3 177.1880 

92       2     4          3 177.4053 

93       1     1          3 178.1416 

94       2     2          3 177.7106 

95       1     3          3 177.6873 

96       2     4          3 177.1182 

 

density    block   fertilizer     yield       

    1:48       1:24    1:32         Min.   :175.4   

     2:48       2:24    2:32        1st Qu.:176.5   

                   3:24     3:32        Median :177.1   

                   4:24                      Mean   :177.0   

                                              3rd Qu.:177.4   

                                                Max.   :179.1   
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Now two way shows that crop yield varies both on type of fertilizer use and density of crops. Now the 

question arises is there a relation between fertilizer used and density that we are not seeing. Adding 

interactions between variables. Sometimes you have reason to think that two of your independent 

variables have an interaction effect rather than an additive effect. For example, in our crop yield 

experiment, planting density may affect the plants’ ability to take up fertilizer. This might influence the 

effect of fertilizer type in a way that isn’t accounted for in the two-way model. 

one.way = aov(yield ~ fertilizer, data = crop.data) 

summary(one.way) 

Df Sum Sq Mean Sq F value Pr(>F)    

fertilizer   2   6.07  3.0340   7.863  7e-04 * 

Residuals   93  35.89  0.3859                    

--- 

Signif. codes:  0 '*' 0.001 '*' 0.01 '' 0.05 '.' 0.1 ' ' 1 

two.way = aov(yield ~ fertilizer + density, data = crop.data) 

summary(two.way) 

                   Df Sum Sq Mean Sq F value   Pr(>F)     

fertilizer   2  6.068   3.034   9.073 0.000253 * 

density      1  5.122   5.122  15.316 0.000174 * 

Residuals   92 30.765   0.334                      

--- 

Signif. codes:  0 '*' 0.001 '*' 0.01 '' 0.05 '.' 0.1 ' ' 1 

To test whether two variables have an interaction effect in ANOVA, simply use an asterisk instead of a 

plus-sign in the model:  

interaction= aov(yield ~ fertilizer*density, data = crop.data) 

summary(interaction) 

                   Df Sum Sq Mean Sq F value   Pr(>F)     

fertilizer          2  6.068   3.034   9.001 0.000273 *** 

density             1  5.122   5.122  15.195 0.000186 *** 

fertilizer:density  2  0.428   0.214   0.635 0.532500     

Residuals          90 30.337   0.337                      

--- 
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

blocking = aov(yield ~ fertilizer + density + block, data = crop.data) 

summary(blocking) 

Df Sum Sq Mean Sq F value   Pr(>F)     

fertilizer   2  6.068   3.034   9.018 0.000269 * 

density      1  5.122   5.122  15.224 0.000184 * 

block        2  0.486   0.243   0.723 0.488329     

Residuals   90 30.278   0.336        

--- 

Signif. codes:  0 ‘*’ 0.001 ‘*’ 0.01 ‘’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The ‘block’ variable has a low sum-of-squares value (0.486) and a high p-value (p = 0.48), so it’s probably 

not adding much information to the model. It also doesn’t change the sum of squares for the two 

independent variables, which means that it’s not affecting how much variation in the dependent 

variable they explain. 

library(AICcmodavg) 

model.set = list(one.way, two.way, interaction, blocking) 

model.names = c("one.way", "two.way", "interaction", "blocking") 

aictab(model.set, modnames = model.names) 

Model selection based on AICc: 

            K   AICc Delta_AICc AICcWt Cum.Wt     LL 

two.way     5 173.86       0.00   0.71   0.71 -81.59 

blocking    7 176.93       3.08   0.15   0.86 -80.83 

interaction 7 177.12       3.26   0.14   1.00 -80.92 

one.way     4 186.41      12.56   0.00   1.00 -88.99 

From these results, it appears that the two.way model is the best fit. The two-way model has the lowest 

AIC value, and 71% of the AIC weight, which means that it explains 71% of the total variation in the 

dependent variable that can be explained by the full set of models. 

The model with blocking term contains an additional 15% of the AIC weight, but because it is more than 

2 delta-AIC worse than the best model, it probably isn’t good enough to include in your results. 

To check whether the model fits the assumption of homoscedasticity, look at the model diagnostic plots 

in R using the plot() function: 

par(mfrow=c(2,2)) 
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plot(two.way) 

par(mfrow=c(1,1)) 

 

#Tukey's Honestly Significant Difference(TUkey's HSD) post-hoc test for pairwise comparisons: 

tukey.two.way=TukeyHSD(two.way) 

Tukey multiple comparisons of means  95% family-wise confidence level 

Fit: aov(formula = yield ~ fertilizer + density, data = crop.data) 

$fertilizer 

         diff         lwr       upr     p adj 

2-1 0.1761687 -0.16822506 0.5205625 0.4452958 

3-1 0.5991256  0.25473179 0.9435194 0.0002219 

3-2 0.4229569  0.07856306 0.7673506 0.0119381 

$density 

        diff       lwr       upr     p adj 

2-1 0.461956 0.2275204 0.6963916 0.0001741 
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Results: Results of the two-way ANOVA indicated that there was a significant main effect in fertilizer 

type, F(2,92)= 9.07, p < 0.001 and planting density, F(1,92)= 15.32, p < 0.001 but there was no any 

significant interaction between fertilizer type and planting density i.e. there was no effect of fertilizer 

type on density of plants, F(2,90)= 0.64, p = .53. 

 

Conclusion: 

We found a statistically-significant difference in average crop yield by both fertilizer type (F(2)=9.018, p 

< 0.001) and by planting density (F(1)=15.316, p<0.001). 

A Tukey post hoc test revealed that fertilizer mix 3 resulted in a higher yield on average than fertilizer 

mix 1, and a higher yield on average than fertilizer mix 2. Planting density was also significant, with 

planting density 2 resulting in a higher yield over planting density 1. A subsequent GroupWise 

comparison showed the strongest yield gains at planting density 2, fertilizer mix 3, suggesting that this 

mix of treatments was most advantageous for crop growth under our experimental conditions. 
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PERFORMANCE OF CORRELATION USING ‘R’ 
 

 

Aim- To perform correlation in R using provided data 

Principle- What is correlation test? 

Correlation test is used to evaluate the association between two or more variables. 

For instance, if we are interested to know whether there is a relationship between the heights of fathers 

and sons, a correlation coefficient can be calculated to answer this question. 

If there is no relationship between the two variables (father and son heights), the average height of son 

should be the same regardless of the height of the fathers and vice versa. 

Here, we will describe the different correlation methods and we will provide practical examples using R 

software. 

Install and load required R packages 

We will use the ggpubr R packagefor easy ggplot-2 based data visualization 

• Install from CRAN as follow: 

install. packages(“ggpubr”) 

install.packages(“ggplot2”) 

• Load ggpubr as follow: 

library(“ggplot2”) 

library(“ggpubr”) 

Methods for correlation analysis 

There are different methods to perform correlation analysis: 

• Pearson correlation (r), which measures a linear dependence between two variables (x and y). It is also 

known as a parametric correlation test because it depends to the distribution of the data. It can be used 

only when x and y are from normal distribution. The plot of y= f(x) is named the linear regression curve. 

• Kendall tau and Spearman rho, which are rank-based correlation coefficients (nonparametric). 

The most commonly used method is a Pearson correlation method. 

Correlation formula 
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In the formula below, 

• x and y are two vectors of length n 

• mx and my corresponds to the means of x and y, respectively. 

 

Pearson Correlation Formula 

 

The p-value (significance level) of the correlation can be determined: 

1. by using the correlation coefficient table for the degrees of freedom: df=n-2df=n-2, where nn is the 

number of observation in x and y variables. 

2. or by calculating the t value as follow: 

 

 

 

 

 

 

 

 

In the case (2) the corresponding p-value is determined using t distribution tablefor df=n-2df=n-2 

If the p-value is <5%, then the correlation between x and y is significant. 

 

Spearman Correlation Formula 

The Spearman correlation method computes the correlation between the rank of x and the rank of y 

variables. 

 

 

 

 

 

 

 

 

 

 

 

 

Kendall Correlation Formula 
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The Kendall correlation method measures the correspondence between the ranking of x and y 

variables. The total number of possible pairings of x and y observations is n(n-1)/2n(n-1)/2, in where n is 

a size of x and y. 

The process is as follow: 

• Begin by ordering the pairs by the x values. If x and y are correlated, then they would have the same 

relative rank orders. 

• Now, for each yi, count the number of yj>yiyj>yi (concordant pairs (c)) and the number of yj<yiyj<yi 

(discordant (d)). 

 

Kendall correlation distance is defined as follow: 

 

 

 

 

 

Where, 

• nc: total number of concordant pairs 

• nd: total number of discordant pairs 

• n: size of x and y 

 

Compute correlation in R 

R functions 

Correlation coefficient can be computed paid using the functionscor() or cor.test(): 

• cor() computes the correlation coefficient 

• cor.test() test for association/ correlation between paired samples. It returns both correlation 

coefficient and the significance level (or p-value) or the correlation. 

The simplified formants are: 

cor(x, y, method=c("pearson", "kendall", "spearman")) 

cor.test(x, y, method=c("pearson", "kendall", "spearman")) 
 

• x, y: numeric vectors with the same length 

• method: correlation method 
 
If your data contain missing values, use the following R code to handle missing values by case-wise 
deletion.  
cor(x , y, method= “pearson”, use= “complete.obs”) 
 
Pearson Correlation Test 

res= cor.test(dat$x, dat$y, method= “pearson”) 

res 

n the result above: 

• t is the t-test statistic value, 

• df is the degrees of freedom, 
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• p-value is the significance level of the t-test. 

• conf.int is the confidence interval of the correlation coefficient and 95% 

• sample estimatesis the correlation coefficient 

Kendall Rank Correlation Test 

 The Kendall rank correlation coefficient or Kendall’s taustatistic is used to estimate a rank-based 

measure of association which test may be used if the data do not necessarily come from a bivariate 

normal distribution. 

res2= cor.test(dat$x, dat$y, method= “kendall”) 

res2 

Spearman Rank Correlation Coefficient 

Spearman's rho statistic is also used to estimate a rank-based measure of association. This test may be 

used if the data do not come from a bivariate normal distribution. 

res3= cor.test(dat$x, dat$y, method= “spearman”) 

res3 

 

Interpret correlation coefficient 

Correlation coefficient is compromise between -1 and 1: 

• -1 indicates a strong negativecorrelation: this means that every time x increases and y decreases  

• 0 means that there is no association between the two variables (x and y) 

• 1 indicates a strong positive correlation: this means that y increases with x 

 

Example: 

#Enter Data for correlation 

fish.length= c(8,13,5,25,21,19,16) 

fish.weight= c(12,22,10,16,8,24,20) 

dat=data.frame(fish.length, fish.weight) 

dat 

 

# Perform Correlation Analysis 

res1 = cor.test(dat$fish.length, dat$fish.weight, method= "pearson") 

res2 = cor.test(dat$fish.length, dat$fish.weight, method= "kendall") 

res3 = cor.test(dat$fish.length, dat$fish.weight, method= "spearman") 

# Report Result 

res1 

res2 

res3 

 

library("ggpubr") 

library("ggplot2") 

ggscatter(dat, 

x="fish.length", 

y="fish.weight", 
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add="reg.line", 

conf.int=TRUE, 

cor.coef=TRUE, 

xlab="Fish Lenth in cm", 

ylab="Fish Weight in g") 

 

Observation: 

> #Enter Data for correlation 

>fish.length= c(8,13,5,25,21,19,16) 

>fish.weight= c(12,22,10,16,8,24,20) 

> dat=data.frame(fish.length, fish.weight) 

> dat 

fish.length fish.weight 

1           8          12 

2          13          22 

3           5          10 

4          25          16 

5          21           8 

6          19          24 

7          16          20 

> 

> # Perform Correlation Analysis 

> res1 = cor.test(dat$fish.length, dat$fish.weight, method= "pearson") 

> res2 = cor.test(dat$fish.length, dat$fish.weight, method= "kendall") 

> res3 = cor.test(dat$fish.length, dat$fish.weight, method= "spearman") 

> # Report Result 

> res1 

 

        Pearson's product-moment correlation 

 

data:  dat$fish.length and dat$fish.weight 

t = 0.55385, df = 5, p-value = 0.6035 

alternative hypothesis: true correlation is not equal to 0 

95 percent confidence interval: 

 -0.6259664  0.8411837 

sample estimates: 

      cor  

0.2404258  

 

> res2 

 

        Kendall's rank correlation tau 
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data:  dat$fish.length and dat$fish.weight 

T = 12, p-value = 0.7726 

alternative hypothesis: true tau is not equal to 0 

sample estimates: 

      tau  

0.1428571  

 

> res3 

        Spearman's rank correlation rho 

 

data:  dat$fish.length and dat$fish.weight 

S = 50, p-value = 0.8397 

alternative hypothesis: true rho is not equal to 0 

sample estimates: 

      rho  

0.1071429  

 

> 

> library("ggpubr") 

> library("ggplot2") 

>ggscatter(dat, 

+ x="fish.length", 

+ y="fish.weight", 

+ add="reg.line", 

+ conf.int=TRUE, 

+ cor.coef=TRUE, 

+ xlab="Fish Lenth in cm", 

+ ylab="Fish Weight in g") 

`geom_smooth()` using formula 'y ~ x' 

> 

> 
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Conclusion: Results of the Pearson correlation indicated that there was no significant positive 

association between Fish weight (grams) and Fish Length (cm), (r (5) = 0.24, p = 0.6035). 

Results of the Kendall’s rank correlation indicated that there was no significant positive association 
between Fish weight (grams) and Fish Length (cm), (T = 12, P = 0.7726, tau = 0.14285). 
  
Results of the Spearman correlation indicated that there was no significant positive association between 
Fish weight (grams) and Fish Length (cm), (S = 50, p =0.8379, Rho = 0.1071429). 
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PERFORMANCE OF REGRESSION USING ‘R’ 
 

Aim- To perform regression in R using provided data 

Principle- Regression analysis is a way to find trends in data. Regression analysis will provide us with an 

equation for a graph so that we can make predictions about our data. For example, if I have been 

putting on weight over the last few years, it can predict how much I will weigh in ten years time if I 

continue to put on weight at the same rate. It will also give me a slew of statistics (including a p-value 

and a correlation coefficient) to tell me how accurate my model is. Most elementary stats courses cover 

very basic techniques, like making scatter plots and performing linear regression. However, I may come 

across more advanced techniques like multiple regressions. 

Multiple regression analysis is used to see if there is a statistically significant relationship between sets 

of variables. It is used to find trends in those sets of data. 

Multiple regression analysis is almost the same as simple linear regression. The only difference between 

simple linear regression and multiple regression is in the number of predictors (“x” variables) used in the 

regression. 

• Simple regression analysis uses a single “x” variable for each dependent “Y” variable. For 

example: (x1, Y1). 

• Multiple regressionsuse multiple “x” variables for each independent variable: (x1)1, (x2)1, 

(x3)1, Y1). 

In one-variable linear regression, I would input one dependent variable (i.e. “sales”) against an 

independent variable (i.e. “profit”). I could set my X1 as one type of sales, my X2 as another type of sales 

and so on. 

Ordinary linear regression usually isn’t enough to take 

into account all of the real-life factors that have an effect 

on an outcome. For example, the following graph plots a 

single variable (number of doctors) against another 

variable (life-expectancy of women). From this graph it 

might appear there is a relationship between life-

expectancy of women and the number of doctors in 

the population. In fact, that’s probably true and you 

could say it’s a simple fix: put more doctors into the 

population to increase life expectancy. But the reality is 
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you would have to look at other factors like the possibility that doctors in rural areas might have less 

education or experience. Or perhaps they have a lack of access to medical facilities like trauma centers. 

The addition of those extra factors would cause me to add additional dependent variables to my 

regression analysis and create a multiple regression analysis model. 

Regression analysis is always performed in software, like Excel or SPSS. The output differs according to 

how many variables I have but it’s essentially the same type of output I would find in a simple linear 

regression. There’s just more of it: 

• Simple regression: Y = b0 + b1 x. 

• Multiple regression: Y = b0 + b1 x1 + b0 + b1 x2…b0…b1 xn. 

•  

The output would include a summary, similar to a summary for simple linear regression that includes: 

• R (the multiple correlation coefficient), 

• R squared (the coefficient of determination), 

• adjusted R-squared, 

• The standard error of the estimate. 

 

These statistics help me figure out how well a regression model fits the data. The ANOVA table in the 

output would give me the p-value and f-statistic. 

 

If I am concerned with finding accurate values for squared multiple correlation coefficient, minimizing 

theshrinkage of the squared multiple correlation coefficient or have another specific goal. 

 

Overfitting is where my model is too complex for your data — 

it happens when my sample size is too small. If I put 

enough predictor variables in my regression model, I will 

nearly always get a model that looks significant. 

While an overfitted model may fit the idiosyncrasies of my 

data extremely well, it won’t fit additional test samples or the 

overall population. The model’sp-values, R-

Squared and regression coefficients can all be misleading. 

Basically, you’re asking too much from a small set of data. 
 

In linear modeling (including multiple regression), I should 

have at least 10-15 observations for each term I am trying to estimate. Any less than that, and I run the 

risk of overfitting my model. 

“Terms” include: 

• Interaction Effects, 

• Polynomial expressions (for modeling curved lines), 

• Predictor variables. 

 

The easiest way to avoid overfitting is to increase my sample size by collecting more data. If I can’t do 

that, the second option is to reduce the number of predictors in your model — either by combining or 
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eliminating them. Factor Analysis is one method you can use to identify related predictors that might be 

candidates for combining. 

1. Cross-Validation 

Use cross validation to detect overfitting: this partitions your data, generalizes your model, and chooses 

the model which works best. One form of cross-validation is predicted R-squared. Most good statistical 

software will include this statistic, which is calculated by: 

• Removing one observation at a time from your data, 

• Estimating the regression equation for each iteration, 

• Using the regression equation to predict the removed observation. 

 

Cross validation isn’t a magic cure for small data sets though, and sometimes a clear model isn’t 

identified even with an adequate sample size. 

 

2. Shrinkage & Resampling 

Shrinkage and resampling techniques (like this R-module) can help you to find out how well my model 

might fit a new sample. 

 

3. Automated Methods 

Automated stepwise regression shouldn’t be used as an overfitting solution for small data sets.  

 

Example: 

head(cars) 

sctter.smooth(x=cars$speed, y=cars$dist, main="Dist~Speed")  #scatterplot 

 

cor(cars$speed, cars$dist, method="pearson") 

 

par(mfrow=c(1, 2))  # divide graph area in 2 columns 

boxplot(cars$speed, main="Speed",  

sub=paste("Outlier rows: ", boxplot.stats(cars$speed)$out))  # box plot for speed 

 

boxplot(cars$dist, main="Distance",  

sub=paste("Outlier rows: ", boxplot.stats(cars$dist)$out))  # box plot for distance 

hist(cars$dist) 

hist(cars$speed) 

 

#build linear regression model on full data 

linearMod= lm(dist~speed, data=cars) 

summary(linearMod) 

 

#Draw a graph 

par(mfrow=c(1,1)) 
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plot(dist~speed, data=cars, 

main= "Plot of Distance travelled vs Speed of Car") 

lines(linearMod$fitted.values~cars$speed,col="blue") 

 

#predict the distance if speed is 80km/h 

newdata=data.frame(speed=80) 

predict(linearMod, newdata, interval="confidence") 

 

Observation: 

> head(cars) 

  speed dist 

1     4    2 

2     4   10 

3     7    4 

4     7   22 

5     8   16 

6     9   10 

>sctter.smooth(x=cars$speed, y=cars$dist, main="Dist~Speed")  #scatterplot 

Error in sctter.smooth(x = cars$speed, y = cars$dist, main = "Dist~Speed") :  

  could not find function "sctter.smooth" 

> 

>cor(cars$speed, cars$dist, method="pearson") 

[1] 0.8068949 

> 

>par(mfrow=c(1, 2))  # divide graph area in 2 columns 

>boxplot(cars$speed, main="Speed",  

+ sub=paste("Outlier rows: ", boxplot.stats(cars$speed)$out))  # box plot for speed 

> 

>boxplot(cars$dist, main="Distance",  

+ sub=paste("Outlier rows: ", boxplot.stats(cars$dist)$out))  # box plot for distance 
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> hist(cars$dist) 

> hist(cars$speed) 

> 

 

 

 

 

 

 

 

 

 

 

 

 

> #build linear regression model on full data 

> linearMod= lm(dist~speed, data=cars) 

> summary(linearMod) 

 

Call: 

lm(formula = dist ~ speed, data = cars) 
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Residuals: 

    Min      1Q  Median      3Q     Max  

-29.069  -9.525  -2.272   9.215  43.201  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept) -17.5791     6.7584  -2.601   0.0123 *   

speed         3.9324     0.4155   9.464 1.49e-12 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 15.38 on 48 degrees of freedom 

Multiple R-squared:  0.6511,    Adjusted R-squared:  0.6438  

F-statistic: 89.57 on 1 and 48 DF,  p-value: 1.49e-12 

 

> 

> #Draw a graph 

> par(mfrow=c(1,1)) 

>plot(dist~speed, data=cars, 

+ main= "Plot of Distance travelled vs Speed of Car") 

>lines(linearMod$fitted.values~cars$speed,col="blue") 

> 
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> #predict the distance if speed is 80km/h 

> newdata=data.frame(speed=80) 

>predict(linearMod, newdata, interval="confidence") 

       fit     lwr      upr 

1 297.0136242.867 351.1602 

 

Results: A simple linear regression was calculated to predict the covered distance by cars based on its 

speed. A significant regression equation was found (F(1,46)=89.57, p < 0.001) , with an R2 of 0.6511. Cars 

predicted covered distance is equal to (-17.58) + 3.9324 x speed.Cars' covered distance increased 3.9324 

km for each kilometer per hour of speed. 

 

Conclusion: According to this model, the distance would be 297.01 km for a speed of 80 kmph. The 95% 

confidence interval of the distance for the speed of 80 kmph is between 242.867 km and 351.1602 km. 

 

Example: 

length= c(12,18,24,30,36,42,48) 

weight= c(5.27,5.68,6.25,7.21,8.02,8.71,8.42) 

 

insect= data.frame(length,weight) 

summary(insect) 

 

library("ggpubr") 

ggscatter(insect,  

           x = "length",  

           y = "weight",  

          add = "reg.line",  

          conf.int = TRUE,  

cor.coef = TRUE,  

cor.method = "pearson", 

          xlab = "insect Length in cm",  

          ylab = "insect Weight in g") 

 

 

fit = lm(weight~length, data= insect) 

summary(fit) 

newdata = data.frame(length=40) 

predict(fit,newdata, interval ="confidence") 
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Observation: 

> length= c(12,18,24,30,36,42,48) 

> weight= c(5.27,5.68,6.25,7.21,8.02,8.71,8.42) 

> 

> insect= data.frame(length,weight) 

> summary(insect) 

     length       weight      

 Min.   :12   Min.   :5.270   

 1st Qu.:21   1st Qu.:5.965   

 Median :30   Median :7.210   

 Mean   :30   Mean   :7.080   

 3rd Qu.:39   3rd Qu.:8.220   

 Max.   :48   Max.   :8.710   

> 

> library("ggpubr") 

Loading required package: ggplot2 

>ggscatter(insect,  

+            x = "length",  

+            y = "weight",  

+           add = "reg.line",  

+           conf.int = TRUE,  

+           cor.coef = TRUE,  

+           cor.method = "pearson", 

+           xlab = "insect Length in cm",  

+           ylab = "insect Weight in g") 

`geom_smooth()` using formula 'y ~ x' 

> 
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> 

> fit = lm(weight~length, data= insect) 

> summary(fit) 

 

Call: 

lm(formula = weight ~ length, data = insect 

Residuals: 

       1        2        3        4        5        6        7  

 0.04143 -0.16571 -0.21286  0.13000  0.32286  0.39571 -0.51143  

 

Coefficients: 

            Estimate Std. Error t value Pr(>|t|)     

(Intercept)  3.99429    0.35656  11.202  9.9e-05 *** 

length       0.10286    0.01104   9.321 0.000239 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.3504 on 5 degrees of freedom 

Multiple R-squared:  0.9456,    Adjusted R-squared:  0.9347  

F-statistic: 86.87 on 1 and 5 DF,  p-value: 0.0002393 

 

> newdata = data.frame(length=40) 

>predict(fit,newdata, interval ="confidence") 

  fit      lwr      upr 

1 8.108571 7.665459 8.551684 

> 

 

Result:A simple linear regression was calculated to predict the weight of an insect based on its length. A 

significant regression equation was found (F(1,5)=86.87, p < 0.001) , with an R2 of 0.9456. Insects 

predicted weight is equal to 3.99 + 0.10286 x length grams when the length is measured in centimeter. 

Insects' weight increased 0.10286 grams for each centimeter of length. 

 

Conclusion: According to this model, the weight would be 8.11 g for a length of 40 cm. The 95% 

confidence interval of the weight for the length of 40 cm is between 7.665 g and 8.552 g.
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ESTIMATION OF DIVERSITY INDICES VALUES OF GIVEN SPECIES USING  

PAST4.03 SOFTWARE 
 

Principle- A Diversity Index (Plural: Indices) is a quantitative measurement that reflects how many 

different type (such as species) are there in a given dataset, and simultaneously takes into account how 

evenly the basic entities (such as individuals) are distributed among these types. In PAST 4.03 software, 

there are 13 diversity indices, including the important ones like Shannon’s Index, Simpson’s index, 

Margalef Index, etc. 

Procedure-  

Step 1: PAST 4.03 icon on the desktop screen was clicked. This led to opening of the software user 

interface. 

Step 2: Once the interface appeared on the screen, the 2 boxes on the left top corner of the interface, 

ascribed with Row attributes and Column attributes were checked. 

Step 3: This opened up a pink-coloured horizontal band, which has, written on it – A, B, C, D, E and so 

on. A similar pink-coloured vertical band also appeared with numbers written on it, with a heading 

called Name. 

Step 4: The variables entered on the horizontal band were the Column attributes, whereas, the variables 

entered on the vertical band form the Row attributes. 

Step 5: After the variables were entered, the previously mentioned boxes were unchecked; this led to 

closure of the attribute rows and columns. The entered variable then appeared on the rows and 

columns. 

Step 6: The concerned dataset was then entered against the respective variables. 

Step 7: The entire dataset was then selected. 

Step 8: Then, the option for Diversity was selected from the topmost taskbar ( 8th from extreme left 

corner). A menu dropped from it. The option Diversity Indices (topmost option) was selected. 

Step 9: Then, it took few seconds to complete the calculation. 

Step 10: A table appeared with all the values of the 13 Diversity Indices. The table has 2 tabs namely 

Number and Plot. The table of values appeared against the Number tab. 

Step 11: One can also obtain the graphical representation of all the 13 Indices, by clicking on the Plot 

tab. All the 3 boxes on the right–hand side of the graph, namely Error Box, Connecting line and Flip axes 
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should be checked. On the right-hand upper side, there is a drop-down menu, where one can select the 

diversity index type, for which he/she want the graph. 

Step 12: One can save the graph, by clicking on the Graph Setting option, then clicking the Save As 

option under Export Tab, then entering the desired directory, file name and Jpg format. This gives the 

desired table and graphs. 

 

Results- 

Table: Diversity Indices results for the given dataset 

 

 

 

Comments- 

 

1. Simpson’s Index: According to Simpson’s 

index, the highest value is shown in the 

month of September i.e. 0.7965 followed 

by the month November, March, January, 

October (i.e. 0.7964, 0.7905, 0.7883, 

0.7846 respectively) whereas the lowest 

diversity index value is shown in the 

month June i.e. 0.4615.  

 

 JAN FEB MAR APRIL MAY JUNE JULY AUG SEP OCT NOV DEC 

Taxa_S 5 5 5 4 4 3 5 5 5 5 5 5 

Individuals 276 183 49 7 14 13 155 214 384 31 107 278 

Dominance_D 0.2117 0.231 0.2095 0.3061 0.3367 0.5385 0.2355 0.2297 0.2035 0.2154 0.2036 0.2215 

Simpson_1-D 0.7883 0.769 0.7905 0.6939 0.6633 0.4615 0.7645 0.7703 0.7965 0.7846 0.7964 0.7785 

Shannon_H 1.579 1.525 1.584 1.277 1.233 0.7903 1.507 1.517 1.601 1.571 1.601 1.552 

Evenness_e^H/S 0.97 0.9193 0.9746 0.8965 0.8576 0.7347 0.9031 0.9113 0.9917 0.9627 0.9912 0.9437 

Brillouin 1.54 1.471 1.433 0.8629 0.9634 0.6122 1.447 1.469 1.571 1.362 1.516 1.513 

Menhinick 0.301 0.3696 0.7143 1.512 1.069 0.8321 0.4016 0.3418 0.2552 0.898 0.4834 0.2999 

Margalef 0.7117 0.7678 1.028 1.542 1.137 0.7797 0.7931 0.7454 0.6722 1.165 0.856 0.7108 

Equitability_J 0.9811 0.9477 0.984 0.9212 0.8892 0.7193 0.9367 0.9423 0.9949 0.9764 0.9945 0.964 

Fisher_alpha 0.8671 0.9494 1.394 3.878 1.871 1.223 0.9877 0.9161 0.8115 1.687 1.087 0.8658 

Berger-Parker 0.2609 0.306 0.2449 0.4286 0.5 0.6923 0.2903 0.271 0.25 0.2903 0.243 0.2842 

Chao-1 5 5 5 4.5 4 3 5 5 5 5 5 5 
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2. Shannon H Index: According to Shannon 

H index, we can conclude that the month 

September and November show the 

equal and highest value i.e. 1.601 

followed by the months March, January, 

October whereas the month June has the 

lowest value i.e. 0.7903. 

If we look carefully, Simpson’s index 

follows a similar trend as that of Shannon 

H index as clear from the table as well as 

the plot i.e. in both the indices 

September has the highest diversity and 

June has the lowest diversity. 

 

3. Dominance D: We all know that dominance 

index show an inverse relation to both 

Shannon and Simpson’s index. As we have 

seen the month September has highest 

diversity followed by whereas the month June 

has more dominance i.e. 05385. So, it can be 

concluded that any one particular species in 

our data is more abundant in the month June 

which makes it a dominant zone. 

 

 

4. Evenness:According to this index, the 

month September is more even than the 

other months, which means all species 

more or less evenly distributed in the 

month September. 
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5. Brillouin Index: According to this index, the 

diversity of species is high in the month 

September i.e. 1.571 followed by the 

month January, November, December 

whereas in the month June the diversity is 

very low i.e. 0.6122. 

 

 

 

 

 

6. Menhinick Index: According to this 

index, we can conclude from our data 

as well as plot that the month April 

shows the highest value i.e. 1.512 than 

the other months and the month 

September shows the lowest value i.e. 

0.2552. 

 

 

 

 

 

7. Margalef Richness Index: According to 

this index, we can see clearly from our 

data as well as plot that the value of 

richness index is maximum in the month 

April i.e. 1.542 whereas the value of 

richness index is minimum in the month 

December i.e. 0.7108. 
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8. Equitability J: Equitability J is also measure of 

evenness. So, it is same as that of Pielou’s 

evenness index. The month September has 

the highest valuei.e. 0.9949, indicating even 

distribution of species whereas the month 

June has the lowest value i.e. 0.7193, 

indicating uneven distribution of species. 

 

 

 

 

9. Fisher_alpha:From the data as well as plot, 

it can be concluded that the month April 

shows highest Fisher_alpha value i.e. 3.878 

whereas the month September shows 

lowest Fisher_alpha value i.e. 0.8115. 

 

 

 

 

 

10. Berger-Parker:According to Berger-Parker 

index, the abundant species is found in the 

month June. The dominance value is high 

in June. So, it can be concluded that any 

one particular species is more abundant in 

the month June. 

 

 

 



Page 69 of 83 
 

 

 

11. Chao-1: According to Chao estimator, we can see that all the months have same species richness i.e. 5 

except the two months April and May. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Concluding Remarks- Out of all months September with high values of both Simpson and Shannon Index 

show that it is a diversified month and the individuals are more or less equally distributed making the 

Equitability and Evenness value higher than other months. Thus it can be concluded that the month 

September has higher number of species whereas the month June has dominant species. 
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FASTA -AN INTRODUCTORY NOTE 
 

The FASTA algorithm is a heuristic method for string comparison. It was developed by Lipman and 

Pearson in 1985 and further improved in 1988. FASTA stands for fast-all” or “FastA”.  

FASTA compares a query string against a single text string. When searching the whole database for 

matches to a given query, we compare the query using the FASTA algorithm to every string in the 

database.  

When looking for an alignment, we might expect to find a few segments in which there will be absolute 

identity between the two compared strings. The algorithm is using this property and focuses on these 

identical regions. 

The current FASTA package contains programs for protein-protein, DNA-DNA, protein-translated DNA 

(with frameshifts), and ordered or unordered peptide searches.  

In addition to rapid heuristic search methods, the FASTA package provides SSEARCH, an implementation 

of the optimal Smith–Waterman algorithm. 

A major focus of the package is the calculation of accurate similarity statistics, so that biologists can 

judge whether an alignment is likely to have occurred by chance, or whether it can be used to infer 

homology. The FASTA package is available from the University of Virginia and the European 

Bioinformatics Institute. 

The FASTA file format used as input for this software is now largely used by other sequence database 

search tools (such as BLAST) and sequence alignment programs (Clustal, T-Coffee, etc.). 
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RETRIEVAL OF THE MITOCHONDRIAL DNA SEQUENCE OF HUMAN (Homo 

sapiens) FROM NCBI DATABASE AND DOWNLOADING IT IN FASTA 

FORMAT 
 

Aim- To access NCBI database and download a file in FASTA format. 

Theory- An important step in providing sequence database access was the development of pages that 

allow queries to make for retrieval of major sequence of nucleotide from such databases (e.g., GenBank, 

EMBI, etc). NCBI stands for ‘National Centre for Biotechnology Information’ and is a part of United 

States of National Library of Medicine (NLM), a branch of NIH – National Institutes of Health. It is 

directed by David Lipman one of the original author of GENINFO & BLAST. 

Requirement-A computer with Internet connection.    

Procedure- 

STEP-1: NCBI website was accused (https://www.ncbi.nlm.nih.gov/) 

STEP-2: On the left side upper portion of the HOME Screen of NCBI, there lies a dropdown menu from 

which, the option “Nucleotide” is selected. 

STEP-3: Then the keyword “amylase” was entered in the Search Tab. 

STEP-4: The Option “mitochondrial DNA [Homo sapiens]” with a unique AccessionNumber AH001266.2 

was selected and clicked. 

STEP-5: One will find option for Download formats on the upper part of the screen. For downloading it in 

FASTA format, click on FASTA take written in blue colour. 

STEP-6: The sequence thus obtained were copied and pasted in Notepad. 

STEP-7: Thus file is saved.  

Thus the desired nucleotide sequence is obtained for Homo sapiens (Human) mitochondrial 

DNAsequence. 

Observation- 

>AH001266.2 Homo sapiens Human (!Kung 9,10) mitochondrial DNA sequences, 5' end 
 
TTCTTTCATGGGGAAGCAGATTTGGGTACCACCCAAGTATTGACTCACCCATCAACAACCGCTATGTATT 
TCGTACATTACTGCCAGCCACCATGAATATTGTACAGTACCATAAATACTTGACCACCTGTAGTACATAA 
AAACCCAATCCACATCAAAACCCTCCCCCCATGCTTACAAGCAAGTACAGCAATCAACCTTCAACTGTCA 
CAATCAACCGCAACTCCAAAGCCACCCCTCACCCACTAGGATACCAACAAACCTACCCACCCTTAACAGT 
ACATAGCACATAAAGCCATTTACCGTACATAGCACATTACAGTCAAATCCCTTCTCGTCCCCATGGATGA 
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CCCCCCTCAGATAGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN
NNN 
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTATTTTCGTCTGGGGGGTGTGCACG
C 
GATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCAGTATCTGTCTTTGATTCCTGCCCCATC 
CCATTATTTATCGCACCTACGTTCAATATTACAGGCGAACATACCTATTAAAGTGTGTTAATTAATTAAT 
GCTTGTAGGACATAATAATAACAATTAAATGTCTGCACAGCCACTTTCCACACAGACATCATAACAAAAA 
ATTTCCACCAAACCCCCCCCTCCCCCCGCTTCTGGCCACAGCACTTAAACACATCTCTGCCAAACCCCAA 
AAACAAAGAACCCTAACACCAGCCTAACCAGATTTCAAATTTTAT 
 

Conclusion- The sequence we have used in our FASTA search is the mitochondrial DNA nucleotide of 

Homo sapiens (Human) under the GenBank accession number AH001266.2. This was sequenced by 

Vigilant, L., Pennington, R., Harpending, H., Kocher, T.D. and Wilson, A.C. in their publication 

“Mitochondrial DNA sequences in single hairs from a southern African Population”, This FASTA sequence 

can be used for various works including BLAST search, MSA preparation and phylogenetic tree 

construction. 
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BLAST - AN INTRODUCTORY NOTE 
 

BLAST, is an acronym for Basic Local Alignment Search Tool and refers to a suite of programs most 

commonly used to generate alignments between a nucleotide or protein sequence, referred to as a 

“query” and nucleotide or protein sequences within a database, referred to as “subject” sequences.  

The original BLAST program used a protein “query” sequence to scan a protein sequence database. 

Specialized variants of BLAST allow fast searches of nucleotide databases with very large query 

sequences. 

BLAST is available from the National Centre for Biotechnology Information (www.ncbi.nlm.nih.gov).  

The BLAST algorithm works by finding a short, or local, region of high similarity between two sequences, 

and then extending this match out from this starting point to both the left and the right.  

 A score is assigned to the match.  The score will increase as more residues are found to match, and will 

decrease if there are gaps in the alignment.  

Alignments with a score that exceed a certain threshold are reported in the output. 
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APPLICATION OF BLAST TO FIND 10 SIMILAR SEQUENCE OF 

MITOCHONDRIAL DNA OF HUMAN (Homo sapiens) NUCLEOTIDE 

SEQUENCE FROM NCBI DATABASE 
 

Aim- To perform BLAST search in NCBI website. 

Theory- Multiple Sequence Alignment (MSA) is a sequence alignment of 3 or more biological sequence – 

generally, DNA or RNA or protein. In many cases, the input – set of query sequence are assumed have an 

evolutionary relationship by which their sharing of a lineage, can be interpreted for understanding their 

descendent from a common ancestry. From the resulting MSA, sequence homology can be inferred and 

phylogenetic analysis can be conduct to access the sequence – whether they share evolutionary origins 

or not. MSA is often used to access sequence conservations of protein, domains, tertiary and secondary 

structure of proteins and even individuals amino acids.   

Requirement- A computer with Internet connection.    

Procedure- 

STEP-1: NCBI website was accused.( https://www.ncbi.nlm.nih.gov/ )  

STEP-2: On the left side upper portion of the HOME Screen of NCBI there lies a dropdown menu from 

which the option “Nucleoide” is selected.  

STEP-3: Then the keyword “human mitochondrial DNA” was entered in the Search Tab. 

A list of the proteins was obtained. 

STEP-4: The Option “mitochondrial DNA [Homo sapiens]” with a unique Accession Number 

“AH001266.2” was selected and clicked. 

STEP-5: The accession number was copied using Ctrl+C option. 

STEP-6: Then the NCBI-BLAST Home page was accused by clicking BLAST, present in right centre part of 

the lower portion of the page or simply entering the url https://blast.ncbi.nlm.nih.gov/, subsequently, 

the nucleotide BLAST tab was selected. This was also termed blastn. 

STEP-7: There was an option Enter Accession Number(s), gi(s) or FASTA sequence(s) in the Enter Query 

Sequence section on the upper left part of page, with a large white rectangular white box below it. The 

accession number was pasted here. 

STEP-8: Then, in theChoose Search Set section, there was dropdown menu against Database option. 

Selected Nucleotide collection (nr/nt) option. 

STEP-9: In the Program selection section, selected Highly similar sequences (megablast) option. 

STEP-10: Then clicked the blue button, inscribed with BLAST. 
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It would take around 30 seconds time, and then, a chart, similar to that on the left hand page will 

appear. This is the desired MSA of mitochondrial DNA (Homo sapiens).The page is printed in FASTA 

format. 

Observation- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion- The given accession number represent a protein sequence. From the BLAST search result we 

can conclude that amylase (Tetradon nigroviridis) is 100% matched whereas amylase 1 protein 

(Tetradon nigroviridis) is 95.32%, amylase 2 protein (Tetradon nigroviridis) and amylase 3 protein ( 

Tetradon nigroviridis) are 94.35% and 92.59% matched with the given protein sequence respectively. 
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MULTIPLE SEQUENCE ALIGNMENT (MSA): - AN INTRODUCTORY NOTE 
 

A Multiple Sequence Alignment (MSA) is an alignment of more than two sequences. We could align 

several DNA or protein sequences. From the output, homology can be inferred and the evolutionary 

relationships between the sequences studied. 

The multiple sequence alignment assumes that the sequences are homologous; they descend from a 

common ancestor. The algorithms will try to align homologous positions or regions with the same 

structure or function. Hence computational algorithms are used to produce and analyze these 

alignments.  

Most MSA algorithms use dynamic programming and heuristic methods. Some of the most usual uses of 

the multiple alignments are: 

• phylogenetic analysis 

• conserved domains 

• protein structure comparison and prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Page 77 of 83 
 

DERIVATION OF MULTIPLE SEQUENCE ALIGNMENT (MSA) USING 

MULTIPLE SEQUENCE VIEWER, VERSION 1.20.0 TO RETRIEVE SEQUENCE 

OF A UNKNOWN PROTEIN SEQUENCE 
 

Aim-To download selected files from BLAST result and perform multiple sequence alignment using 

MUSCLE in NCBI. 

Theory- Multiple Sequence Alignment of 3 or more biological sequence generally, DNA or RNA or 

protein. In way cases, the input-set of query sequences are assumed to have an evolutionary 

relationship by which, their sharing of a lineage, can be interpreted for understanding their descendent 

from a common ancestry. From the resulting MSA, sequence homology can be inferred and 

phylogenetic analysis can be conducted to assess the sequences- whether they share evolutionary 

origins or not. MSA is often proteins, domains, tertiary and secondary structure of proteins and even 

individuals amino acids. 

Requirement- A computer with Internet connection.    

Procedure- 

STEP-1: NCBI website was accused ( https://www.ncbi.nlm.nih.gov/) 

STEP-2: Then the NCBI-BLAST Home page was accused by clicking BLAST , present in right centre part of 

the lower portion of the page or simply entering the url https://blast.ncbi.nlm.nih.gov/, subsequently, 

the protein BLAST tab was selected. This was also termed as blastp. 

STEP-3: There was an option Enter Accession Number(s), gi(s) or FASTA sequence(s) in the Enter Query 

Sequence section on the upper left part of page, with a large white rectangular white box below it. Paste 

a unknown FASTA sequence. 

STEP-4: Then keeping the parameters in Choose Search Set section, as default (Non- redundant protein 

sequence(nr)). The algorithm option - blastp(), in the Program Selection section was selected. 

STEP-5: Then clicked the blue button, inscribed with BLAST. It would take around 5 seconds, and then a 

distribution chart for top 100 BLAST Horton 100 subject sequence, will appear. 

STEP-6: There would be a menu just below the chart, with the heading Accession Description with a list 

of similar sequence and square shaped dialogue boxes on their side 10 of such sequences were selected. 

STEP-7: After selecting 10 sequences of different organisms clicked on to the Multiple Sequence 

Alignment Viewer option present in the top most right corner. 

STEP-8: We have to wait for few seconds and will finally get the multiple alignment sequence of 10 

selected sequence of different organism. 
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Observation- 

 

 

Conclusion- From our observations it can be concluded that in multiple sequence alignment (MSA) 10 

sequences of different organisms were selected and all have 100% similar chain Equus asinus 

hemoglobin protein which are shown by red bands. 
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PHYLOGENETIC TREE: - AN INTRODUCTORY NOTE 
 

Phylogenetic tree is a diagram that represents evolutionary relationships among organisms. 

Phylogenetic trees are hypotheses, not definitive facts. From the time of Charles Darwin, it has been the 

dream of many biologists to reconstruct the evolutionary history of all organisms on Earth and express it 

in the form of a phylogenetic tree. Phylogeny uses evolutionary distance, or evolutionary relationship, as 

a way of classifying organisms (taxonomy). The pattern of branching in a phylogenetic tree reflects how 

species or other groups evolved from a series of common ancestors. Phylogenetic relationship between 

organisms is given by the degree and kind of evolutionary distance. To understand this concept better, 

let us define taxonomy. Taxonomy is the science of naming, classifying and describing organisms. 

Taxonomists arrange the different organisms in taxa (groups). These are then further grouped together 

depending on biological similarities. This grouping of taxa reflects the degree of biological similarity. 

Phylogenic relationships have been traditionally studied based on morphological data. Scientists used to 

examine different traits or characteristics and tried to establish the degree of relatedness between 

organisms. Then scientists realized that not all shared characteristics are useful in studying relationships 

between organisms. This discovery led to a study of systematics called cladistics. Cladistics is the study 

of phylogenetic relationships based on shared, derived characteristics. There are two types of 

characteristics, primitive traits and derived traits. 
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CONSTRUCTION OF A PHYLOGENETIC TREE FROM THE OUTPUT OF 

MULTIPLE SEQUENCE ALIGNMENT (MSA) TO RETRIEVE 10 SEQUENCE OF 

A UNKNOWN PROTEIN SEQUENCE USING NCBI 
 

Aim-To draw a phylogenetic tree online using NCBI website. 

Theory- A Phylogenetic tree or evolutionary tree is a branching diagram or “ tree”-shaped schematic 

representation, that shows the inferred evolutionary relationship among various biological species or  

other entities based upon similarities and differences, in their physical and/or genetic characteristics. 

The taxa joined together in the tree are implied to have descended from a common ancestor. 

Requirement- A computer with Internet 

Procedure- 

STEP-1: NCBI website was accused (https://www.ncbi.nlm.nih.gov/) 

STEP-2: Then the NCBI-BLAST Home page was accused by clicking BLAST , present in right centre part of 

the lower portion of the page or simply entering the URL https://blast.ncbi.nlm.nih.gov/, subsequently, 

the protein BLAST tab was selected. This was also termed as blastp. 

STEP-3: There was an option Enter Accession Number(s), gi(s) or FASTA sequence(s) in the Enter Query 

Sequence section on the upper left part of page, with a large white rectangular white box below it. Paste 

a unknown FASTA sequence. 

STEP-4: Then keeping the parameters in Choose Search Set section, as default (Non- redundant protein 

sequence(nr)). The algorithm option - blastp(), in the Program Selection section was selected. 

STEP-5: Then clicked the blue button, inscribed with BLAST. It would take around 5 seconds, and then a 

distribution chart for top 100 BLAST Horton 100 subject sequence, will appear. 

STEP-6: There would be a menu just below the chart, with the heading Accession Description with a list 

of similar sequence and square shaped dialogue boxes on their side 10 of such sequences were selected. 

STEP-7: After selecting 10 sequences of different organisms clicked on to the Multiple Alignment option 

present in the top most right corner. 

 STEP-8: We have to wait for few seconds and will get the multiple alignment results (Cobalt RID) of 10 

selected sequences of different organisms. 

STEP-9: Now clicked on the Phylogenetic Tree option top most left side corner. 

STEP-10: Now a new page open named with Phylogenetic Tree View where the phylogenetic tree 

analysis appeared of the selected 10 different organisms. 
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STEP-11: Next clicked on the dropdown button in the Sequence Lebel tab. Now clicked on the 

Taxonomic Name. 

This procedure of the Phylogenetic tree for Multiple Sequence Alignment of An UNKNOWN PROTEIN 

SEQUENCE. 

Observation- 

 

 

Conclusion-According to the cladogram, Equus asinus originated from a common ancestral group. Lepus 

europaeusis the most closely related species to Equus asinus. If we look into the cladogram deeply, we 

could see that Equus asinus and Equus hemionus kulan are the most remote species as it originated early 

from the remote common unknown ancestor. 

 

 


