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Regression Analysis 

The term regression was introduced by Francis Galton. The average 

height of children born of parents of a given height tended to move or 

regress toward the average height in population as a whole. This 

Galton’s law of universal regression was confirmed by his friend Karl 

Pearson. 

 Modern interpretation of regression is quite different. Regression 

analysis is concerned with the study of dependence of one variable, the 

dependent variable, on one or more variables, the explanatory 

variables.  

The objective of the regression analysis is to estimate and/or predicting 

the (population) mean or average value of the dependent variable in 

terms of the known or fixed (in repeated sampling) values of the 

independent or explanatory variables.   

 

Simple Linear Regression 

We study the estimation of a linear relationship between two variables, 

𝑌𝑖 and 𝑋𝑖 of the form: 

𝑌𝑖 = 𝛼 +  𝛽𝑋𝑖 +  𝑢𝑖 ,    𝑖 = 1, 2, … … , 𝑛 

where 𝑌𝑖 denotes the i-th observation on the dependent variable Y 

which could be consumption, investment or output, and 𝑋𝑖 denotes the 
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i-th observation on the independent variable X which could be income, 

the interest rate and an input. 

 

Cross Section Data – If collected on firms or households at a given point 

in time. 

Time Series Data – If collected over time for a specific industry or 

country. 

n: no. of firms or households in case of cross section data. 

n: no. of years if the observations are collected annually. 

𝛼 and 𝛽 are the unknown parameters to be estimated from the data. A 

plot of data i.e. Y versus X shows the relationship exists empirically 

between X and Y. Let us assume that Y is consumption and X is 

disposable income. Therefore, we would expect a positive relationship 

between these two variables and the data may look like figure 1 below 

when we plotted for a random sample of households. 
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If 𝛼 and 𝛽 are known, one could draw a straight line (𝛼 +  𝛽𝑋𝑖) as shown 

in figure 1. It is clear that not all the observations (Xi, Yi) lie on the 

straight line (𝛼 +  𝛽𝑋𝑖) is due to random error ui. This error may be due 

to: 

(i) Omission of relevant factors that could influence consumption 

other than income, like real wealth, varying taste or unforeseen 

events, age, sex, religion, no. of family members that induce 

households to consume more or less.  

(ii) Measurement errors, which could be the result of households 

not reporting their consumption or income accurately. 

(iii) Wrong choice of a linear relationship between consumption and 

income, when the true relationship may be non-linear. 
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These different causes of error term will have different effects on the 

distribution of this error. 

 In real life, 𝛼 and 𝛽 are not known, and have to be estimated from 

the observed data {(𝑋𝑖 , 𝑌𝑖)𝑓𝑜𝑟 𝑖 = 1,2, … … . , 𝑛}. Thus, true line (𝛼 +  𝛽𝑋𝑖)  

as well as true disturbances (the uis) are unobservable. Here, 𝛼 and 

𝛽 could be estimated by the best fitting line through the data. 

Different researchers may draw different lines through the same 

data. What makes the line better than the other? One measure of 

misfit is the amount of error from the observed Yi to the guessed 

line/estimated line. Therefore, 𝑌�̂� =∝̂+ �̂�𝑋𝑖 is the estimated line. ⋀ 

denotes the estimate or guess on the appropriate parameter or 

variable.  

In other word, we obtain the predicted or guessed 𝑌𝑖(𝑌�̂�) 

corresponding to each 𝑋𝑖, from the predicted line, ∝̂+ �̂�𝑋𝑖. Next, we find 

the error in guessing that 𝑌𝑖, by subtracting the actual 𝑌𝑖 from the 

guessed 𝑌�̂�.     

∴  𝑒𝑖 = 𝑌𝑖 − 𝑌�̂� is the error     

          𝑌�̂� =∝̂+ �̂�𝑋𝑖: Estimated Relationship 

The only difference between figures 1 and 2 is the fact that figure 1 

draws the true consumption line which is unknown to the researcher. 

Whereas figure 2 is a predicted or guessed consumption line drawn 

from the sample data. Therefore, 𝑢𝑖𝑠 are unobservable, the 𝑒𝑖𝑠 are 
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observable. Note that there will be n errors for each line, one error 

corresponding to every observation.  

 Now given the n pairs of observations on Y and X, we would like 

to determine the estimated consumption line in such a manner it is as 

close as possible to the actual/true consumption line. To do this we 

choose the consumption line (estimated regression line) in such a way 

the sum of the errors ∑ 𝑒𝑖
𝑛
𝑖=1 = ∑ (𝑌𝐼 − 𝑌�̂�)

𝑛
𝑖=1  is as small as possible. 

 

 

 

 

 

 

 

 

 

If we 

adopt the criterion of minimizing ∑ 𝑒𝑖
𝑛
𝑖=1 , the above figure shows that 

the residuals e2 and e3 as well as the errors e1 and e4 receive the same 

weight in the sum (e1 + e2 + e3 + e4). However, the errors e2 and e3 are 

much closer to the regression line than the latter two errors e1 and e4. 
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As a consequence of giving equal weight to the errors, the sum of these 

errors is zero ( ∑ 𝑒𝑖
𝑛
𝑖=1 = 10 − 2 + 2 − 10 = 0) although e1 and e4 are more 

scattered around the regression line than e2 and e3. We can avoid this 

problem if we adopt the Least Square Criterion, which states that the 

estimated regression line can be chosen in such a way that ∑ 𝑒𝑖
2𝑛

𝑖=1 =

 ∑ (𝑌𝑖 − 𝑌�̂�)
2𝑛

𝑖=1  is as small as possible i.e., sum of the squares of the 

errors is minimum. By squaring 𝑒𝑖, this method of least squares gives 

more weight to the residuals such as e1 and e4 than e2 and e3. Under 

the minimum ∑ 𝑒𝑖
𝑛
𝑖=1  criterion, the sum can be small (even zero) even 

though the ei’s are widely spread about the estimated regression line. 

But this is not possible under the least squares criterion, for the larger 

ei (in absolute value), the larger the ∑ 𝑒𝑖
2𝑛

𝑖=1 . 

 Ordinary Least Squares (OLS) method gives the estimated 𝛼 and 

𝛽 by minimizing ∑ 𝑒𝑖
2𝑛

𝑖=1 . 

Least Squares Estimation/Least Squares Criterion 

Least squares estimation minimizes the residual sum of squares where 

the residuals are given by  

 𝑒𝑖 = 𝑌𝑖 − 𝑌�̂� = 𝑌𝑖 − ∝̂ − �̂�𝑋𝑖 , 𝑖 = 1,2, … … , 𝑛 and ∝̂ and �̂� denote the 

estimated values of the regression parameters 𝛼 and 𝛽. The residual 

sum of squares (RSS) is written as 

𝑅𝑆𝑆 = ∑ 𝑒𝑖
2

𝑛

𝑖=1

= (𝑌𝑖 − ∝̂ − �̂�𝑋𝑖)2 
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This sum of squared residuals is minimized by two first order 

conditions 

                                     
𝜕 ∑ 𝑒𝑖

2𝑛
𝑖=1

𝜕∝̂
= 0 --------------------------- (1) 

                            
𝜕 ∑ 𝑒𝑖

2𝑛
𝑖=1

𝜕�̂�
= 0 --------------------------- (2) 

From (1) we get 

               
𝜕 ∑ 𝑒𝑖

2𝑛
𝑖=1

𝜕∝̂
= 0     ⇒   

𝜕 ∑ (𝑌𝑖− ∝̂ −�̂�𝑋𝑖)
2𝑛

𝑖=1

𝜕∝̂
= 0 

⇒ 2 ∑ (𝑌𝑖 − ∝̂ − �̂�𝑋𝑖)𝑛
𝑖=1 = 0    ⇒∑ 𝑌𝑖

𝑛
𝑖=1 = ∑ �̂�𝑛

𝑖=1 + �̂� ∑ 𝑋𝑖
𝑛
𝑖=1            

⇒ ∑ 𝑌𝑖
𝑛
𝑖=1 = 𝑛�̂� + �̂� ∑ 𝑋𝑖

𝑛
𝑖=1    ---------------------- (1a) 

 

 

From 2 we get 

𝜕 ∑ 𝑒𝑖
2𝑛

𝑖=1

𝜕�̂�
= 0 

⇒ 
𝜕 ∑ (𝑌𝑖− ∝̂ −�̂�𝑋𝑖)

2𝑛
𝑖=1

𝜕�̂�
= 0   ⇒ 2[∑ (𝑌𝑖 − ∝̂ − �̂�𝑋𝑖)𝑛

𝑖=1 ](−𝑋𝑖) = 0 

⇒∑ 𝑋𝑖𝑌𝑖
𝑛
𝑖=1 =∝̂ ∑ 𝑋𝑖

𝑛
𝑖=1 + �̂� ∑ 𝑋𝑖

2𝑛
𝑖=1  -------------------- (1b) 
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(1a) and (1b) equations are called normal equations. Solving those 

normal equations, we get values of ∝̂ and �̂�. Multiplying (1a) by ∑ 𝑋𝑖
𝑛
𝑖=1  

and (1b) by n and subtract them we get (1a*∑ 𝑿𝒊
𝒏
𝒊=𝟏   -  1b*n) 

 

 ∑ 𝑋𝑖
𝑛
𝑖=1 ∑ 𝑌𝑖

𝑛
𝑖=1 = 𝑛�̂� ∑ 𝑋𝑖

𝑛
𝑖=1 + �̂�(∑ 𝑋𝑖

𝑛
𝑖=1 )2  

𝑛 ∑ 𝑋𝑖𝑌𝑖
𝑛
𝑖=1         =  𝑛 ∝̂ ∑ 𝑋𝑖

𝑛
𝑖=1   + 𝑛�̂� ∑ 𝑋𝑖

2𝑛
𝑖=1   

-                    -                    - 

∑ 𝑋𝑖
𝑛
𝑖=1 ∑ 𝑌𝑖

𝑛
𝑖=1 −  𝑛 ∑ 𝑋𝑖𝑌𝑖

𝑛
𝑖=1 = �̂�(∑ 𝑋𝑖

𝑛
𝑖=1 )2 − 𝑛�̂� ∑ 𝑋𝑖

2𝑛
𝑖=1    

⇒�̂�[(∑ 𝑋𝑖
𝑛
𝑖=1 )2 − 𝑛 ∑ 𝑋𝑖

2𝑛
𝑖=1 ] = ∑ 𝑋𝑖

𝑛
𝑖=1 ∑ 𝑌𝑖

𝑛
𝑖=1 −  𝑛 ∑ 𝑋𝑖𝑌𝑖

𝑛
𝑖=1  

⇒ �̂�[𝑛 ∑ 𝑋𝑖
2𝑛

𝑖=1 − (∑ 𝑋𝑖
𝑛
𝑖=1 )2] = 𝑛 ∑ 𝑋𝑖𝑌𝑖

𝑛
𝑖=1 − ∑ 𝑋𝑖

𝑛
𝑖=1 ∑ 𝑌𝑖

𝑛
𝑖=1  

⇒ �̂� =
𝑛 ∑ 𝑋𝑖𝑌𝑖

𝑛
𝑖=1 −∑ 𝑋𝑖

𝑛
𝑖=1 ∑ 𝑌𝑖

𝑛
𝑖=1

𝑛 ∑ 𝑋𝑖
2𝑛

𝑖=1 −(∑ 𝑋𝑖
𝑛
𝑖=1 )

2  

⇒�̂� =
∑ 𝑋𝑖𝑌𝑖

𝑛
𝑖=1 −1

𝑛⁄ ∑ 𝑋𝑖
𝑛
𝑖=1 ∑ 𝑌𝑖

𝑛
𝑖=1

(∑ 𝑋𝑖
𝑛
𝑖=1 )

2
−1

𝑛⁄ ∑ 𝑋𝑖
2𝑛

𝑖=1

 

⇒�̂� =
∑ (𝑋𝑖−�̅�)(𝑌𝑖−�̅�)𝑛

𝑖=1

∑ (𝑋𝑖−�̅�)2𝑛
𝑖=1

 

   

                                         Where 𝑥𝑖 = ∑ (𝑋𝑖 − �̅�)𝑛
𝑖=1  and 𝑦𝑖 = ∑ (𝑌𝑖 − �̅�)𝑛

𝑖=1  

Dividing (1a) by n we get 

   

                                           

⇒   �̂�  =  
∑ 𝒙𝒊𝒚𝒊

𝒏
𝒊=𝟏

∑ 𝒙𝒊
𝟐𝒏

𝒊=𝟏
 

�̂� = �̅� − �̂��̅� 


